Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T14:07:57.660Z Has data issue: false hasContentIssue false

ON THE FUNCTIONAL ESTIMATION OF MULTIVARIATE DIFFUSION PROCESSES

Published online by Cambridge University Press:  18 September 2017

Federico M. Bandi*
Affiliation:
Johns Hopkins University and Edhec-Risk Institute
Guillermo Moloche
Affiliation:
fermat.ai
*
*Address correspondence to Federico Bandi, Johns Hopkins Carey Business School, 100 International Drive, Baltimore, MD 21202, USA; e-mail: fbandi1@jhu.edu.

Abstract

We propose a nonparametric estimation theory for the occupation density, the drift vector, and the diffusion matrix of multivariate diffusion processes. The estimators are sample analogues to infinitesimal conditional expectations constructed as Nadaraya-Watson kernel averages. Mild assumptions are imposed on the statistical properties of the multivariate system to obtain limiting results. Harris recurrence is all that we require to show consistency and asymptotic (mixed) normality of the proposed functional estimators. The identification method and asymptotic theory apply to both stationary and nonstationary multivariate diffusion processes of the recurrent type.

Type
ARTICLES
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

We are especially grateful to Valentina Corradi for helpful discussions. We thank Xiaohong Chen, the Editor Peter C.B. Phillips, and four anonymous referees for their very useful comments. Seminar participants at various institutions and conferences have also provided suggestions for which we are thankful. Bandi acknowledges financial support from the IBM Corporation Faculty Research Fund at Chicago Booth, University of Chicago, and from Carey Business School, Johns Hopkins University.

References

REFERENCES

Aït-Sahalia, Y. (1996) Testing continuous-time models of the spot interest rate. Review of Financial Studies 9, 385426.CrossRefGoogle Scholar
Aït-Sahalia, Y., Hansen, L.P., & Scheinkman, J. (2010) Operator methods for continuous-time Markov processes. In Aït-Sahalia, Y. & Hansen, L.P. (eds.), Handbook of Financial Econometrics vol. 1, pp. 166. Elsevier.Google Scholar
Aït-Sahalia, Y. & Park, J. (2016) Bandwidth selection and asymptotic properties of local nonparametric estimators of possibly nonstationary continuous-time models. Journal of Econometrics 192, 119138.CrossRefGoogle Scholar
Athreya, K.B. & Ney, P. (1978) A new approach to the limit theory of recurrent Markov chains. Transactions of the American Mathematical Society 245, 493501.CrossRefGoogle Scholar
Azéma, J., Kaplan-Duflo, M., & Revuz, D. (1966) Mesure invariante sur les classes récurrentes des processus de Markov. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 8, 157181.CrossRefGoogle Scholar
Bandi, F.M., Corradi, V., & Wilhelm, D. (2016) Possibly Nonstationary Cross-Validation. Working paper, Johns Hopkins University, University of Surrey and University College of London.CrossRefGoogle Scholar
Bandi, F.M. & Phillips, P.C.B. (2003) Fully nonparametric estimation of scalar diffusion models. Econometrica 71, 241283.CrossRefGoogle Scholar
Bandi, F.M. & Phillips, P.C.B. (2010) Nonstationary continuous-time processes. In Aït-Sahalia, Y. & Hansen, L.P. (eds.), Handbook of Financial Econometrics vol. 1, pp. 139201. Elsevier.CrossRefGoogle Scholar
Bandi, F.M. & Renò, R. (2017) Nonparametric stochastic volatility. Econometric Theory, forthcoming.Google Scholar
Bickel, P.J. & Rosenblatt, M. (1973) On some global measures of the deviations of density function estimates. Annals of Statistics 1, 10711095.CrossRefGoogle Scholar
Bosq, D. (1995) Sur le comportement exotique de l’estimateur à noyau de la densité marginale d’un processus à temps continu. Comptes Rendus de l’Académie des Sciences - Séries I 320, 369372.Google Scholar
Bosq, D. (1998) Nonparametric Statistics for Stochastic Processes: Estimation and Prediction, 2nd ed. Lecture Notes in Statistics, vol. 110. Springer-Verlag.CrossRefGoogle Scholar
Boudoukh, J., Downing, C., Richardson, M., Stanton, R., & Whitelaw, R.F. (2007) A multifactor, nonlinear, continuous-time model of interest rate volatility. In Bollerslev, T., Russell, J.R., & Watson, M.W., (eds.), Volatility and Time Series Econometrics: Essays in Honor of Robert F. Engle pp. 296322. Oxford University Press.Google Scholar
Brugière, P. (1991) Estimation de la variance d’un processus de diffusion dans le cas multidimensionnel. Comptes Rendus de l’Académie des Sciences - Séries I 312, 9991004.Google Scholar
Brugière, P. (1993) Théorème de limite centrale pour un estimateur nonparamétrique de la variance d’un processus de diffusion multidimensionnelle. Annales de l’Institut Henri Poincaré 29, 357389.Google Scholar
Cai, Z. & Hong, Y. (2003) Nonparametric methods in continuous-time finance: A selective review. In Akritas, M.G. & Politis, D.N. (eds.), Recent Advances and Trends in Nonparametric Statistics, pp. 283302. Elsevier.CrossRefGoogle Scholar
Castellana, J.V. & Leadbetter, M.R. (1986) On smoothed probability density estimation for stationary processes. Stochastic Processes and Their Applications 21, 179193.CrossRefGoogle Scholar
Chen, X. (1999) How often does a Harris recurrent Markov chain recur? The Annals of Probability 27, 13241346.CrossRefGoogle Scholar
Chen, X. (2000) On the limit laws of the second order for additive functionals of Harris recurrent Markov chains. Probability Theory and Related Fields 116, 89123.CrossRefGoogle Scholar
Chen, X. & Hansen, L.P. (2002) Dependence Properties of Multivariate Reversible Diffusions. Working paper, London School of Economics and University of Chicago.Google Scholar
Conley, T., Hansen, L.P., Luttmer, E., & Scheinkman, J. (1997) Short-term interest rates as subordinated diffusions. Review of Financial Studies 10, 525577.CrossRefGoogle Scholar
Darling, D.A. & Kac, M. (1957) On occupation times for Markoff processes. Transactions of the American Mathematical Society 84, 444458.CrossRefGoogle Scholar
Fan, J. (1992) Design-adaptive nonparametric regression. Journal of the American Statistical Association 87, 9981004.CrossRefGoogle Scholar
Fan, J. (2005) A selective overview of nonparametric methods in financial econometrics. Statistical Science 20, 317337.Google Scholar
Fan, J. & Zhang, C. (2003) A re-examination of diffusion estimators with applications to financial model validation. Journal of the American Statistical Association 98, 118134.CrossRefGoogle Scholar
Fan, Y. (1994) Testing the goodness of fit of a parametric density function by kernel method. Econometric Theory 10, 316356.CrossRefGoogle Scholar
Feigin, P.D. (1985) Stable convergence of semimartingales. Stochastic Processes and Their Applications 19, 125134.CrossRefGoogle Scholar
Florens-Zmirou, D. (1993) On estimating the diffusion coefficient from discrete observations. Journal of Applied Probability 30, 790804.CrossRefGoogle Scholar
Gallant, R. & Tauchen, G. (2010) Simulated score inference and indirect inference for continuous-time models. In Aït-Sahalia, Y. & Hansen, L.P. (eds.), Handbook of Financial Econometrics vol. 1, pp. 427477. Elsevier.CrossRefGoogle Scholar
Geman, D. & Horowitz, J. (1980) Occupation densities. Annals of Probability 8, 167.CrossRefGoogle Scholar
Genon-Catalot, V. & Jacod, J. (1993) On the estimation of the diffusion coefficient for multi-dimensional diffusion processes. Annales de l’Institut Henri Poincaré 29, 119151.Google Scholar
Guerre, E. (2004) Design-Adaptive Point-Wise Nonparametric Regression Estimation for Recurrent Markov Time Series. Working paper, Centre de Recherche en Economie et Statistique.CrossRefGoogle Scholar
Höpfner, R. & Löcherbach, E. (2003) Limit Theorems for Null Recurrent Markov Processes. Memoirs of the American Mathematical Society, vol. 161, American Mathematical Society, No. 768.Google Scholar
Jiang, G.J. & Knight, J. (1999) Finite sample comparison of alternative estimators of Itô diffusion processes: A Monte-Carlo study. Journal of Computational Finance 2, 538.CrossRefGoogle Scholar
Johannes, M. & Polson, N. (2010) MCMC methods for continuous-time financial econometrics. In Aït-Sahalia, Y. & Hansen, L.P. (eds.), Handbook of Financial Econometrics vol. 2, pp. 172. Elsevier.Google Scholar
Kallianpur, G. & Robbins, H. (1953) Ergodic properties of the Brownian motion process. Proceedings of the National Academy of Sciences of the United States of America 39, 525533.CrossRefGoogle ScholarPubMed
Karatzas, I. & Shreve, S.E. (1991) Brownian Motion and Stochastic Calculus. Springer-Verlag.Google Scholar
Karlsen, H.A. & Tjøstheim, D. (2001) Nonparametric estimation in null recurrent time series. Annals of Statistics 29, 372416.CrossRefGoogle Scholar
Karlsen, H.A., Myklebust, T., & Tjøstheim, D. (2007) Nonparametric estimation in a nonlinear cointegrating type model. Annals of Statistics 35, 252299.CrossRefGoogle Scholar
Kasahara, Y. (1984) Limit theorems for Levy processes and Poisson point processes and their applications to Brownian excursions. Journal of Mathematics of Kyoto University 24, 521538.Google Scholar
Kusuoka, S. & Stroock, D. (1985) Applications of the Malliavin calculus, Part II. Journal of the Faculty of Science, University of Tokyo 32, 176.Google Scholar
Kutoyants, A. (1995) On density estimation by the observations of ergodic diffusion process. Laboratoire de Statistique et Processus, Univ. du Maine et d’Angers, prepublication 95–8.Google Scholar
Lévy, P. (1939) Sur certains processus stochastiques homogènes. Compositio Mathematica 7, 283339.Google Scholar
Löcherbach, E. & Loukianova, D. (2008) On Nummelin splitting for continuous time Harris recurrent Markov processes and application to kernel estimation for multi-dimensional diffusions. Stochastic Processes and Their Applications 118, 13011321.CrossRefGoogle Scholar
Löcherbach, E. & Loukianova, D. (2009) The law of iterated logarithm for additive functionals and martingale additive functionals of Harris recurrent Markov processes. Stochastic Processes and Their Applications 119, 23122335.CrossRefGoogle Scholar
Magnus, J.R. & Neudecker, H. (1988) Matrix Differential Calculus with Applications in Statistics and Econometrics. Wiley.Google Scholar
Masry, E. (1996a) Multivariate local polynomial regression for time series: Uniform strong consistency and rates. Journal of Time Series Analysis 17, 571599.CrossRefGoogle Scholar
Masry, E. (1996b) Multivariate regression estimation: Local polynomial fitting for time series. Journal of Stochastic Processes and their Applications 65, 81101.CrossRefGoogle Scholar
Meyn, S.P. & Tweedie, R.L. (1993) Stability of Markovian processes II. Continuous-time processes and sampled chains. Advances in Applied Probability 25, 487517.CrossRefGoogle Scholar
Moloche, G. (2004a) Local Nonparametric Estimation of Scalar Diffusions. Working paper, University of Chicago.Google Scholar
Moloche, G. (2004b) Kernel Regression for Nonstationary Harris Recurrent Processes. Working paper, University of Chicago.Google Scholar
Nummelin, E. (1978) A splitting technique for Harris recurrent Markov chains. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 43, 309318.CrossRefGoogle Scholar
Pagan, A. & Ullah, A. (1999) Nonparametric Econometrics. Cambridge University Press.CrossRefGoogle Scholar
Park, J. (2006) Spatial Analysis of Time Series. Working paper, Texas A&M University.Google Scholar
Pitman, J. (1998) The Distribution of Local Times of a Brownian Bridge. Working paper, University of California, Berkeley.Google Scholar
Phillips, P.C.B. (2001) Descriptive econometrics for nonstationary time series with empirical illustrations. Journal of Applied Econometrics 16, 389413.CrossRefGoogle Scholar
Revuz, D. & Yor, M. (1998) Continuous Martingales and Brownian Motion. Springer-Verlag.Google Scholar
Schienle, M. (2008) Nonparametric Nonstationary Regression. Doctoral thesis, Mannheim University.Google Scholar
Stanton, R. (1997) A nonparametric model of term structure dynamics and the market price of interest rate risk. Journal of Finance 52, 19732002.CrossRefGoogle Scholar
Touati, A. (1992) On the functional convergence in distribution of sequences of semimartingales to a mixture of Brownian motions. Theory of Probability and its Applications 36, 752771.CrossRefGoogle Scholar
Veretennikov, A.Y. (1999) On Castellana-Leadbetter’s condition for diffusion density estimation. Statistical Inference for Stochastic Processes 2, 19.CrossRefGoogle Scholar
Wang, Q. (2015) Limit Theorems for Nonlinear Cointegrating Regression. World Scientific.CrossRefGoogle Scholar
Wang, Q. & Phillips, P.C.B. (2009a) Structural nonparametric cointegrating regression. Econometrica 77, 19011948.Google Scholar
Wang, Q. & Phillips, P.C.B. (2009b) Asymptotic theory for local time density estimation and nonparametric cointegrating regression. Econometric Theory 25, 710738.CrossRefGoogle Scholar
Xu, K.-L. (2009) Empirical likelihood based inference for recurrent nonparametric diffusions. Journal of Econometrics 142, 265280.CrossRefGoogle Scholar