Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T13:35:09.482Z Has data issue: false hasContentIssue false

OPENING THE BLACK BOX: STRUCTURAL FACTOR MODELS WITH LARGE CROSS SECTIONS

Published online by Cambridge University Press:  01 October 2009

Mario Forni
Affiliation:
Università di Modena e Reggio Emilia and CEPR
Domenico Giannone
Affiliation:
ECARES, Université Libre de Bruxelles
Marco Lippi*
Affiliation:
Università di Roma “La Sapienza”
Lucrezia Reichlin
Affiliation:
European Central Bank ECARES, Université Libre de Bruxelles and CEPR
*
*Address correspondence to Marco Lippi, Dipartimento di Economia, Via Cesalpino 12, I-00161 Roma, Italy; e-mail: ml@lippi.ws.

Abstract

This paper shows how large-dimensional dynamic factor models are suitable for structural analysis. We argue that all identification schemes employed in structural vector autoregression (SVAR) analysis can be easily adapted in dynamic factor models. Moreover, the “problem of fundamentalness,” which is intractable in SVARs, can be solved, provided that the impulse-response functions are sufficiently heterogeneous. We provide consistent estimators for the impulse-response functions and for (n, T) rates of convergence. An exercise with U.S. macroeconomic data shows that our solution of the fundamentalness problem may have important empirical consequences.

Type
ARTICLES
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Altug, S. (1989) Time-to-build and aggregate fluctuations: Some new evidence. International Economic Review 30, 889920.CrossRefGoogle Scholar
Anderson, B.D.O. & Deistler, M. (2008) Properties of zero-free transfer function matrices. SICE Journal of Control, Measurement, and System Integration, forthcoming.Google Scholar
Anderson, T.W. (1971). The Statistical Analysis of Time Series. Wiley.Google Scholar
Bai, J. (2003). Inferential theory for factor models of large dimensions. Econometrica 71, 135171.CrossRefGoogle Scholar
Bai, J. & Ng, S. (2002). Determining the number of factors in approximate factor models. Econometrica 70, 191221.CrossRefGoogle Scholar
Bai, J. & Ng, S. (2007). Determining the number of primitive shocks in factor models. Journal of Business & Economic Statistics 25, 5260.CrossRefGoogle Scholar
Bernanke, B.S. & Boivin, J. (2003). Monetary policy in a data rich environment. Journal of Monetary Economics 50, 525546.CrossRefGoogle Scholar
Bernanke, B.S., Boivin, J., & Eliasz, P. (2005). Measuring monetary policy: A factor augmented autoregressive (FAVAR) approach. Quarterly Journal of Economics 120, 387422.Google Scholar
Boivin, J. & Giannoni, M.P. (2006). Has monetary policy become more effective? Review of Economics and Statistics 88, 445462.CrossRefGoogle Scholar
Boivin, J. & Ng, S. (2003). Are more data always better for factor analysis? Journal of Econometrics 127, 169194.Google Scholar
Chamberlain, G. (1983). Funds, factors, and diversification in arbitrage pricing models. Econometrica 51, 12811304.CrossRefGoogle Scholar
Chamberlain, G. & Rothschild, M. (1983). Arbitrage, factor structure and mean-variance analysis in large asset markets. Econometrica 51, 13051324.CrossRefGoogle Scholar
Chari, V.V., Kehoe, P.J., & McGrattan, E.R. (2005). A Critique of Structural VARs Using Real Business Cycle Theory. Federal Reserve Bank of Minneapolis Working paper 631.CrossRefGoogle Scholar
Connor, G. & Korajczyk, R.A. (1988). Risk and return in an equilibrium APT. Application of a new test methodology. Journal of Financial Economics 21, 255289.CrossRefGoogle Scholar
Fernández-Villaverde, J., Rubio-Ramirez, J.F., Sargent, T.J., & Watson, M.W. (2007) ABCs (and Ds) of understanding VARs. American Economic Review 97, 10211026.CrossRefGoogle Scholar
Forni, M., Hallin, M., Lippi, M., & Reichlin, L. (2000) The generalized dynamic factor model: Identification and estimation. The Review of Economics and Statistics 82, 540554.CrossRefGoogle Scholar
Forni, M., Hallin, M., Lippi, M., & Reichlin, L. (2005) The generalized factor model: One-sided estimation and forecasting. Journal of the American Statistical Association 100, 830840.CrossRefGoogle Scholar
Forni, M. & Lippi, M. (2001). The generalized dynamic factor model: Representation theory. Econometric Theory 17, 11131141.CrossRefGoogle Scholar
Forni, M. & Reichlin, L. (1998). Let’s get real: A factor analytical approach to disaggregated business cycle dynamics. Review of Economic Studies 65, 453473.CrossRefGoogle Scholar
Geweke, J. (1977). The dynamic factor analysis of economic time series. In Aigner, D.J. & Goldberger, A.S. (eds.), Latent Variables in Socio-Economic Models, pp. 365383. North-Holland.Google Scholar
Giannone, D., Reichlin, L., & Sala, L. (2002). Tracking Greenspan: Systematic and Nonsystematic Monetary Policy Revisited. CEPR Discussion paper 3550.Google Scholar
Giannone, D., Reichlin, L., & Sala, L. (2005). Monetary policy in real time. In Gertler, M. & Rogoff, K., (eds.), NBER Macroeconomic Annual. 2004, pp. 161200. MIT Press.Google Scholar
Giannone, D., Reichlin, L., & Sala, L. (2006). VARs, common factors and the empirical validation of equilibrium business cycle models. Journal of Econometrics 127, 257279.CrossRefGoogle Scholar
Hallin, M. & Liška, R. (2007). The generalized dynamic factor model: Determining the number of factors. Journal of the American Statistical Association 102, 103117.CrossRefGoogle Scholar
Hannan, E.J. (1970). Multiple Time Series. Wiley.CrossRefGoogle Scholar
Hannan, E.J. & Deistler, M. (1988). The Statistical Theory of Linear Systems. Wiley.Google Scholar
Hansen, L.P. & Sargent, T.J. (1980). Formulating and estimating dynamic linear rational expectations models. Journal of Economic Dynamics and Control 2, 746.CrossRefGoogle Scholar
Hansen, L.P. & Sargent, T.J. (1991). Two problems in interpreting vector autoregressions. In Hansen, L.P. & Sargent, T.J. (eds.), Rational Expectations Econometrics. pp. 77119. Westview.Google Scholar
Ireland, P.N. (2004). A method for taking models to the data. Journal of Economic Dynamics and Control 28, 12051226.CrossRefGoogle Scholar
King, R.G., Plosser, C.I., Stock, J.H., & Watson, M.W. (1991). Stochastic trends and economic fluctuations. American Economic Review 81, 819840.Google Scholar
Lippi, M. & Reichlin, L. (1993) The dynamic effects of aggregate demand and supply disturbances: Comment, American Economic Review 83, 644652.Google Scholar
Lippi, M. & Reichlin, L. (1994) VAR analysis, nonfundamental representation, Blaschke matrices. Journal of Econometrics 63, 307325.CrossRefGoogle Scholar
Rozanov, Y. (1967). Stationary Random Processes. Holden-Day.Google Scholar
Sargent, T.J. (1989). Two models of measurements and the investment accelerator. Journal of Political Economy 97, 251287.CrossRefGoogle Scholar
Sargent, T.J. & Sims, C.A. (1977). Business cycle modelling without pretending to have too much a priori economic theory. In Sims, C.A. (ed.), New Methods in Business Research, 45109. Federal Reserve Bank of Minneapolis.Google Scholar
Stewart, G.W. & Sun, J. (1990). Matrix Perturbation Theory. Academic Press.Google Scholar
Stock, J.H. & Watson, M.W. (2002a). Macroeconomic forecasting using diffusion indexes. Journal of Business & Economic Statistics 20, 147162.CrossRefGoogle Scholar
Stock, J.H. & Watson, M.W. (2002b). Forecasting using principal components from a large number of predictors. Journal of the American Statistical Association 97, 11671179.CrossRefGoogle Scholar
Stock, J.H. & Watson, M.W. (2005). Implications of Dynamic Factor Models for VAR Analysis. NBER Working papers 11467.CrossRefGoogle Scholar
van der Waerden, B.L. (1953). Modern Algebra, vol. I. Frederick Ungar.Google Scholar