Hostname: page-component-6bf8c574d5-9f2xs Total loading time: 0 Render date: 2025-03-04T00:04:28.472Z Has data issue: false hasContentIssue false

PARAMETERS ON THE BOUNDARY IN PREDICTIVE REGRESSION

Published online by Cambridge University Press:  21 February 2025

Giuseppe Cavaliere*
Affiliation:
University of Bologna, University of Exeter
Iliyan Georgiev
Affiliation:
University of Bologna
Edoardo Zanelli
Affiliation:
University of Bologna
*
Address correspondence to: Giuseppe Cavaliere, Department of Economics, University of Bologna, Piazza Scaravilli 2, 40126 Bologna, Italy; email: giuseppe.cavaliere@unibo.it.

Abstract

We consider bootstrap inference in predictive (or Granger-causality) regressions when the parameter of interest may lie on the boundary of the parameter space, here defined by means of a smooth inequality constraint. For instance, this situation occurs when the definition of the parameter space allows for the cases of either no predictability or sign-restricted predictability. We show that in this context constrained estimation gives rise to bootstrap statistics whose limit distribution is, in general, random, and thus distinct from the limit null distribution of the original statistics of interest. This is due to both (i) the possible location of the true parameter vector on the boundary of the parameter space and (ii) the possible non-stationarity of the posited predicting (resp. Granger-causing) variable. We discuss a modification of the standard fixed-regressor wild bootstrap scheme where the bootstrap parameter space is shifted by a data-dependent function in order to eliminate the portion of limiting bootstrap randomness attributable to the boundary and prove validity of the associated bootstrap inference under non-stationarity of the predicting variable as the only remaining source of limiting bootstrap randomness. Our approach, which is initially presented in a simple location model, has bearing on inference in parameter-on-the-boundary situations beyond the predictive regression problem.

Type
MISCELLANEA
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

We thank Yixiao Sun (co-editor), two anonymous referees, Rasmus Søndergaard Pedersen and Mervyn Silvapulle for comments. Financial support from the Italian Ministry of University and Research (PRIN 2020 Grant 2020B2AKFW) is gratefully acknowledged.

References

REFERENCES

Andrews, D. W. K. (1999). Estimation when a parameter is on a boundary. Econometrica , 67, 13411383.CrossRefGoogle Scholar
Andrews, D. W. K. (2000). Inconsistency of the bootstrap when a parameter is on the boundary of the parameter space. Econometrica , 68, 399405.CrossRefGoogle Scholar
Berti, P., Pratelli, L., & Rigo, P. (2006). Almost sure weak convergence of random probability measures. Stochastics: An International Journal of Probability and Stochastic Processes , 78, 9197.CrossRefGoogle Scholar
Cavaliere, G., Nielsen, H. B., Pedersen, R. S. & Rahbek, A. (2022). Bootstrap inference on the boundary of the parameter space, with application to conditional volatility models. Journal of Econometrics , 227, 241263.CrossRefGoogle Scholar
Cavaliere, G., Nielsen, H. B., & Rahbek, A. (2017). On the consistency of bootstrap testing for a parameter on the boundary of the parameter space. Journal of Time Series Analysis , 38, 513534.CrossRefGoogle Scholar
Cavaliere, G., Perera, I., & Rahbek, A. (2024). Specification tests for GARCH processes with nuisance parameters on the boundary. Journal of Business & Economic Statistics , 42, 197214.CrossRefGoogle Scholar
Cavaliere, G., & Georgiev, I. (2020). Inference under random limit bootstrap measures. Econometrica , 88, 25472574.CrossRefGoogle Scholar
Chatterjee, A., & Lahiri, S. N. (2011). Bootstrapping Lasso estimators. Journal of the American Statistical Association , 106, 608–25.CrossRefGoogle Scholar
Chen, Q., & Fang, Z. (2019). Inference on functionals under first order degeneracy. Journal of Econometrics , 210, 459481.CrossRefGoogle Scholar
Demetrescu, M., Georgiev, I., Taylor, A. M. R. & Rodrigues, P. M. M. (2023). Extensions to IVX methods of inference for return predictability. Journal of Econometrics , 237 (2, Part C).CrossRefGoogle Scholar
Doko Tchatoka, F., & Wang, W. (2021). Uniform inference after pretesting for exogeneity with heteroskedastic data, MPRA paper 106408, University Library of Munich, Germany.CrossRefGoogle Scholar
Dümbgen, L. (1993). On nondifferentiable functions and the bootstrap. Probability Theory and Related Fields , 95, 125140.CrossRefGoogle Scholar
Fang, Z. (2014). Optimal plug-in estimators of directionally differentiable functionals. Unpublished manuscript.Google Scholar
Fang, Z., & Santos, A. (2019). Inference on directionally differentiable functions. Review of Economic Studies , 86, 377412.Google Scholar
Georgiev, I., Harvey, D., Leybourne, S., & Taylor, A. M. R. (2019). A bootstrap stationarity test for predictive regression invalidity. Journal of Business & Economic Statistics , 37, 528541.CrossRefGoogle Scholar
Geyer, C. J. (1994). On the asymptotics of constrained M-estimation. Annals of Statistics , 22, 19932010.CrossRefGoogle Scholar
Hirano, K., & Porter, J. R. (2012). Impossibility results for nondifferentiable functionals. Econometrica , 80, 17691790.Google Scholar
Hong, H., & Li, J. (2020). The numerical bootstrap. Annals of Statistics , 48, 397412.CrossRefGoogle Scholar
Kallenberg, O. (1997). Foundations of modern probability . Springer-Verlag.Google Scholar
Kallenberg, O. (2017). Random measures: Theory and applications . Springer-Verlag.CrossRefGoogle Scholar
Müller, U. K., & Watson, M. (2008). Testing models of low frequency variability. Econometrica , 76, 9791016.Google Scholar
Phillips, P. C. B. (2014). On confidence intervals for autoregressive roots and predictive regression. Econometrica , 82, 11771195.Google Scholar
Romano, J. P., Shaikh, A. M., & Wolf, M. (2014). A practical two-step method for testing moment inequalities. Econometrica , 82, 19792002.Google Scholar
Sweeting, T. J. (1989). On conditional weak convergence. Journal of Theoretical Probability , 2, 461474.CrossRefGoogle Scholar
Supplementary material: File

Cavaliere et al. supplementary material

Cavaliere et al. supplementary material
Download Cavaliere et al. supplementary material(File)
File 263.3 KB