Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T09:41:45.106Z Has data issue: false hasContentIssue false

Semiparametric Estimation of Location and Other Discrete Choice Moments

Published online by Cambridge University Press:  11 February 2009

Arthur Lewbel
Affiliation:
Brandeis University

Abstract

Latent variable discrete choice model estimation and interpretation depend on the density function of the latent variable's unobserved random component. This paper provides a simple semiparametric estimator of the moments of this density. The results can be used as starting values for parametric estimators, to estimate the appropriate location and scaling for semiparametric estimators, for specification testing including tests of latent error skewness and kurtosis, and to estimate coefficients of discrete explanatory variables in the model.

Type
Articles
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aït-Sahalia, Y (1992) The Delta and Bootstrap Methods for Nonlinear Functionals of Nonparametric Kernel Estimators Based on Dependent Multivariate Data. Unpublished draft.Google Scholar
Andrews, D.W.K. (1994) Asymptotics for semiparametric econometric models via stochastic equicontinuity. Econometrica 62, 4372.CrossRefGoogle Scholar
Andrews, D.W.K. (1995) Nonparametric kernel estimation for semiparametric models. Econometric Theory 11, 560596.CrossRefGoogle Scholar
Collomb, G. & Härdle, W. (1986) Strong uniform convergence rates in robust nonparametric time series analysis and prediction: Kernel regression estimation from dependent observations. Stochastic Processes and Their Applications 23, 7789.CrossRefGoogle Scholar
Cosslett, S.R. (1983) Distribution-free maximum likelihood estimator of the binary choice model. Econometrica 51, 765782.CrossRefGoogle Scholar
Fan, J. & Truong, Y.K. (1993) Nonparametric regression with errors in variables. The Annals of Statistics 21, 19001925.CrossRefGoogle Scholar
Gallant, A.R. & Nychka, D.W. (1987) Semi-nonparametric maximum likelihood estimation. Econometrica 55, 363390.CrossRefGoogle Scholar
Hampel, F.R., Ronchetti, E., Rousseeuw, P., & Stahel, W. (1986) Robust Statistics–The Approach Based on Influence Functions. New York: John Wiley & Sons.Google Scholar
Härdle, W. (1990) Applied Nonparametric Regression. Econometric Society Monograph 19. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Härdle, W., Hart, J., Marron, J.S., & Tsybakov, A.B. (1992) Bandwidth choice for average derivative estimation. Journal of the American Statistical Society 87, 218226.Google Scholar
Härdle, W. & Stoker, T.M. (1989) Investigating smooth multiple regression by the method of average derivatives. Journal of the American Statistical Association 84, 986995.Google Scholar
Hasminsky, R. & Ibragimov, I. (1979) On the nonparametric estimation of functionals. In Mandel, P. & Huskova, M. (eds.), Proceedings of the 2nd Prague Symposium on Asymptotic Statistics, pp. 4151. Amsterdam: North-Holland.Google Scholar
Hausman, J. (1978) Specification tests in econometrics. Econometrica 46, 12511271.CrossRefGoogle Scholar
Horowitz, J.L. (1992) A smoothed maximum score estimator for the binary response model. Econometrica 60, 505532.CrossRefGoogle Scholar
Huber, P.J. (1964) Robust estimation of a location parameter. Annals of Mathematical Statistics 35, 73101.CrossRefGoogle Scholar
Ichimura, H. (1992) Semiparametric least squares (SLS) and weighted SLS estimation of single index models. Journal of Econometrics 58, 71120.Google Scholar
Klein, R. & Spady, R.H. (1993) An efficient semiparametric estimator for binary response models. Econometrica 61, 387421.CrossRefGoogle Scholar
Lee, L.-F. & Sepanski, J.H. (1995) Estimation of linear and nonlinear errors-in-variables models using validation data. Journal of the American Statistical Association 90, 130140.CrossRefGoogle Scholar
Levit, B. (1978) Asymptotically efficient estimation of nonlinear functionals. Problems of Information Transmission 14, 204209.Google Scholar
Lewbel, A. (1995a) Boundary Effects of Nonparametric Estimators Containing Derivatives. Working paper, Brandeis University.Google Scholar
Lewbel, A. (1995b) Consistent nonparametric hypothesis tests with an application to testing Slutsky symmetry. Journal of Econometrics 67, 379401.Google Scholar
Manski, C. (1985) Semiparametric analysis of discrete response: Asymptotic properties of the maximum score estimator. Journal of Econometrics 27, 313334.CrossRefGoogle Scholar
McFadden, D.L. (1984) Econometric analysis of qualitative response models. In Griliches, Z. & Intriligator, M.D. (eds.), Handbook of Econometrics, vol. 2, pp. 13961457. Amsterdam: Elsevier.Google Scholar
McFadden, D.L. (1993) Estimation of Social Value from Willingness-to-Pay Data. Unpublished manuscript.Google Scholar
Newey, W.K. (1994) The asymptotic variance of semiparametric estimators. Econometrica 62, 13491382.Google Scholar
Newey, W.K. & McFadden, D.L. (1994) Large sample estimation and hypothesis testing. In Engle, R.F. & McFadden, D.L. (eds.). Handbook of Econometrics, vol. 4. Amsterdam: Elsevier.Google Scholar
Powell, J.L. (1986) Symmetrically trimmed least squares estimation for tobit models. Econometrica 54, 14351460.CrossRefGoogle Scholar
Powell, J.L., Stock, J.H., & Stoker, T.M. (1989) Semiparametric estimation of index coefficients. Econometrica 57, 14031430.CrossRefGoogle Scholar
Powell, J.L. & Stoker, T.M. (1992) Optimal Bandwidth Choice for Density Weighted Averages. Sloan Working paper 3424–92-EFA, MIT.Google Scholar
Serfling, R.J. (1980) Approximation Theorems of Mathematical Statistics. New York: John Wiley and Sons.CrossRefGoogle Scholar
Stefanski, L.A. & Carroll, R.J. (1990) Deconvoluting kernel density estimators. Statistics 21, 169184.CrossRefGoogle Scholar
Stoker, T.M. (1991) Equivalence of direct, indirect and slope estimators of average derivatives. In Barnett, W.A., Powell, J., & Tauchen, G. (eds.), Nonparametric and Semiparametric Methods in Econometrics and Statistics, pp. 99124. Cambridge: Cambridge University Press.Google Scholar