Published online by Cambridge University Press: 28 March 2022
This paper develops an estimation methodology for network data generated from a system of simultaneous equations, which allows for network interdependencies via spatial lags in the endogenous and exogenous variables, as well as in the disturbances. By allowing for higher-order spatial lags, our specification provides important flexibility in modeling network interactions. The estimation methodology builds, among others, on the two-step generalized method of moments estimation approach introduced in Kelejian and Prucha (1998, Journal of Real Estate Finance and Economics 17, 99–121; 1999, International Economic Review 40, 509–533; 2004, Journal of Econometrics 118, 27–50). The paper considers limited and full information estimators, and one- and two-step estimators, and establishes their asymptotic properties. In contrast to some of the earlier two-step estimation literature, our asymptotic results facilitate joint tests for the absence of all forms of network spillovers.
We are grateful to the editor, a guest editor, and three anonymous referees for their very helpful comments. We gratefully acknowledge financial support from the National Institute of Health through SBIR grants R43 AG027622 and R44 AG027622. We also thank the CESifo for their hospitality.