Published online by Cambridge University Press: 24 July 2017
This article revisits the asymptotic inference for nonstationary AR(1) models of Phillips and Magdalinos (2007a) by incorporating a structural change in the AR parameter at an unknown time k0. Consider the model ${y_t} = {\beta _1}{y_{t - 1}}I\{ t \le {k_0}\} + {\beta _2}{y_{t - 1}}I\{ t > {k_0}\} + {\varepsilon _t},t = 1,2, \ldots ,T$, where I{·} denotes the indicator function, one of ${\beta _1}$ and ${\beta _2}$ depends on the sample size T, and the other is equal to one. We examine four cases: Case (I): ${\beta _1} = {\beta _{1T}} = 1 - c/{k_T}$, ${\beta _2} = 1$; (II): ${\beta _1} = 1$, ${\beta _2} = {\beta _{2T}} = 1 - c/{k_T}$; (III): ${\beta _1} = 1$, ${\beta _2} = {\beta _{2T}} = 1 + c/{k_T}$; and case (IV): ${\beta _1} = {\beta _{1T}} = 1 + c/{k_T}$, ${\beta _2} = 1$, where c is a fixed positive constant, and kT is a sequence of positive constants increasing to ∞ such that kT = o(T). We derive the limiting distributions of the t-ratios of ${\beta _1}$ and ${\beta _2}$ and the least squares estimator of the change point for the cases above under some mild conditions. Monte Carlo simulations are conducted to examine the finite-sample properties of the estimators. Our theoretical findings are supported by the Monte Carlo simulations.
Tianxiao Pang and Yanling Liang’s research was supported by the Department of Education of Zhejiang Province in China (N20140202).