Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-24T02:47:22.531Z Has data issue: false hasContentIssue false

THEORY OF LOW FREQUENCY CONTAMINATION FROM NONSTATIONARITY AND MISSPECIFICATION: CONSEQUENCES FOR HAR INFERENCE

Published online by Cambridge University Press:  27 December 2024

Alessandro Casini*
Affiliation:
University of Rome Tor Vergata
Taosong Deng*
Affiliation:
Hunan University
Pierre Perron*
Affiliation:
Boston University
*
Corresponding author at: Dep. of Economics and Finance, University of Rome Tor Vergata, Via Columbia 2, Rome, 00133, IT.; e-mail: alessandro.casini@uniroma2.it. College of Finance and Statistics, Hunan University, 109 Shijiachong Road, Yuelu District, Changsha, Hunan 41006, China. e-mail: tsdeng@hnu.edu.cn. Dep. of Economics, Boston University, 270 Bay State Road, Boston, MA 02215, US. e-mail: perron@bu.edu.
Corresponding author at: Dep. of Economics and Finance, University of Rome Tor Vergata, Via Columbia 2, Rome, 00133, IT.; e-mail: alessandro.casini@uniroma2.it. College of Finance and Statistics, Hunan University, 109 Shijiachong Road, Yuelu District, Changsha, Hunan 41006, China. e-mail: tsdeng@hnu.edu.cn. Dep. of Economics, Boston University, 270 Bay State Road, Boston, MA 02215, US. e-mail: perron@bu.edu.
Corresponding author at: Dep. of Economics and Finance, University of Rome Tor Vergata, Via Columbia 2, Rome, 00133, IT.; e-mail: alessandro.casini@uniroma2.it. College of Finance and Statistics, Hunan University, 109 Shijiachong Road, Yuelu District, Changsha, Hunan 41006, China. e-mail: tsdeng@hnu.edu.cn. Dep. of Economics, Boston University, 270 Bay State Road, Boston, MA 02215, US. e-mail: perron@bu.edu.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We establish theoretical results about the low frequency contamination (i.e., long memory effects) induced by general nonstationarity for estimates such as the sample autocovariance and the periodogram, and deduce consequences for heteroskedasticity and autocorrelation robust (HAR) inference. We present explicit expressions for the asymptotic bias of these estimates. We show theoretically that nonparametric smoothing over time is robust to low frequency contamination. Nonstationarity can have consequences for both the size and power of HAR tests. Under the null hypothesis there are larger size distortions than when data are stationary. Under the alternative hypothesis, existing LRV estimators tend to be inflated and HAR tests can exhibit dramatic power losses. Our theory indicates that long bandwidths or fixed-b HAR tests suffer more from low frequency contamination relative to HAR tests based on HAC estimators, whereas recently introduced double kernel HAC estimators do not suffer from this problem. We present second-order Edgeworth expansions under nonstationarity about the distribution of HAC and DK-HAC estimators and about the corresponding t-test in the regression model. The results show that the distortions in the rejection rates can be induced by time variation in the second moments even when there is no break in the mean.

Type
ARTICLES
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Footnotes

We are grateful to Peter C.B. Phillips, Anna Mikusheva and the referees for useful suggestions. We thank Whitney Newey and Tim Vogelsang for discussions and Andrew Chesher, Adam McCloskey, Zhongjun Qu, and Daniel Whilem for comments.

References

REFERENCES

Altissimo, F., & Corradi, V. (2003). Strong rules for detecting the number of breaks in a time series. Journal of Econometrics, 117, 207244.CrossRefGoogle Scholar
Andrews, D. W. K. (1991). Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica , 59, 817858.CrossRefGoogle Scholar
Andrews, D. W. K. (1993). Tests for parameter instability and structural change with unknown change-point. Econometrica , 61, 821856.CrossRefGoogle Scholar
Andrews, D. W. K., & Monahan, J. C. (1992). An improved heteroskedasticity and autocorrelation consistent covariance matrix estimator. Econometrica , 60, 953966.CrossRefGoogle Scholar
Bai, J., & Perron, P. (1998). Estimating and testing linear models with multiple structural changes. Econometrica , 66, 4778.CrossRefGoogle Scholar
Belotti, F., Casini, A., Catania, L., Grassi, S., & Perron, P. (2023). Simultaneous bandwidths determination for double-kernel HAC estimators and long-run variance estimation in nonparametric settings. Econometric Reviews , 42, 281306.CrossRefGoogle Scholar
Bentkus, R. Y., & Rudzkis, R. A. (1982). On the distribution of some statistical estimates of spectral density. Theory of Probability and Its Applications , 27, 795814.CrossRefGoogle Scholar
Bhattacharya, R., Gupta, V., & Waymire, E. (1983). The Hurst effect under trends. Journal of Applied Probability , 20, 649662.CrossRefGoogle Scholar
Bhattacharya, R. N., & Ghosh, J. K. (1978). On the validity of the formal Edgeworth expansion. Annals of Statistics , 6, 434451.CrossRefGoogle Scholar
Bhattacharya, R. N., & Rao, R. R. (Eds.). (1975). Normal approximation and asymptotic expansion . Wiley.Google Scholar
Brillinger, D. (1975). Time series data analysis and theory . Holt, Rinehart and Winston.Google Scholar
Cai, Z. (2007). Trending time-varying coefficient time series models with serially correlated errors. Journal of Econometrics , 136, 163188.CrossRefGoogle Scholar
Casini, A. (2018). Tests for forecast instability and forecast failure under a continuous record asymptotic framework. Preprint, arXiv:1803.10883.Google Scholar
Casini, A. (2022). Comment on Andrews (1991) “Heteroskedasticity and autocorrelation consistent covariance matrix estimation”. Econometrica , 90, 12.CrossRefGoogle Scholar
Casini, A. (2023). Theory of evolutionary spectra for heteroskedasticity and autocorrelation robust inference in possibly misspecified and nonstationary models. Journal of Econometrics , 235, 372392.CrossRefGoogle Scholar
Casini, A. (2024). The fixed-b limiting distribution and the ERP of HAR tests under nonstationarity. Journal of Econometrics , 238, 105625.CrossRefGoogle Scholar
Casini, A., & Perron, P. (2019). Structural breaks in time series. In Oxford research encyclopedia of economics and finance . Oxford University Press.Google Scholar
Casini, A., & Perron, P. (2021). Continuous record Laplace-based inference about the break date in structural change models. Journal of Econometrics , 224, 321.CrossRefGoogle Scholar
Casini, A., & Perron, P. (2022a). Continuous record asymptotics for change-point models. Preprint, arXiv:1803.10881.Google Scholar
Casini, A., & Perron, P. (2022b). Generalized Laplace inference in multiple change-points models. Econometric Theory , 38, 3565.CrossRefGoogle Scholar
Casini, A., & Perron, P. (2024a). Change-point analysis of time series with evolutionary spectra. Journal of Econometrics , 242, 105811.CrossRefGoogle Scholar
Casini, A., & Perron, P. (2024b). Prewhitened long-run variance estimation robust to nonstationarity. Journal of Econometrics , 242, 105794.CrossRefGoogle Scholar
Chan, K. W. (2022a). Optimal difference-based variance estimators in time series: a general framework. Annals of Statistics , 50, 13761400.CrossRefGoogle Scholar
Chan, K. W. (2022b). Mean-structure and autocorrelation consistent covariance matrix estimation. Journal of Business and Economic Statistics , 40, 201215.CrossRefGoogle Scholar
Chen, B., & Hong, Y. (2012). Testing for smooth structural changes in time series models via nonparametric regression. Econometrica , 80, 11571183.Google Scholar
Christensen, B. J., & Varneskov, R. T. (2017). Medium band least squares estimation of fractional cointegration in the presence of low-frequency contamination. Journal of Econometrics , 97, 218244.CrossRefGoogle Scholar
Crainiceanu, C. M., & Vogelsang, T. J. (2007). Nonmonotonic power for tests of a mean shift in a time series. Journal of Statistical Computation and Simulation , 77, 457476.CrossRefGoogle Scholar
Dahlhaus, R. (1997). Fitting time series models to nonstationary processes. Annals of Statistics , 25, 137.CrossRefGoogle Scholar
de Jong, R. M., & Davidson, J. (2000). Consistency of kernel estimators of heteroskedastic and autocorrelated covariance matrices. Econometrica , 68, 407423.CrossRefGoogle Scholar
Demetrescu, M., & Salish, N. (2024). (Structural) VAR models with ignored changes in mean and volatility. International Journal of Forecasting , 40, 840854.CrossRefGoogle Scholar
Deng, A., & Perron, P. (2006). A comparison of alternative asymptotic frameworks to analyse a structural change in a linear time trend. Econometrics Journal , 9, 423447.CrossRefGoogle Scholar
Diebold, F. X., & Inoue, A. (2001). Long memory and regime switching. Journal of Econometrics , 105, 131159.CrossRefGoogle Scholar
Diebold, F. X., & Mariano, R. S. (1995). Comparing predictive accuracy. Journal of Business and Economic Statistics , 13, 253263.CrossRefGoogle Scholar
Dou, L. (2024). Optimal HAR inference. Quantitative Economics, forthcoming.CrossRefGoogle Scholar
Elliott, G., & Müller, U. K. (2007). Confidence sets for the date of a single break in linear time series regressions. Journal of Econometrics , 141, 11961218.CrossRefGoogle Scholar
Giacomini, R., & Rossi, B. (2009). Detecting and predicting forecast breakdowns. Review of Economic Studies , 76, 669705.CrossRefGoogle Scholar
Giacomini, R., & Rossi, B. (2010). Forecast comparisons in unstable environments. Journal of Applied Econometrics , 25, 595620.CrossRefGoogle Scholar
Giacomini, R., & Rossi, B. (2015). Forecasting in nonstationary environments: What works and what doesn’t in reduced-form and structural models. Annual Review of Economics , 7, 207229.CrossRefGoogle Scholar
Giacomini, R., & White, H. (2006). Tests of conditional predictive ability. Econometrica , 74, 15451578.CrossRefGoogle Scholar
Granger, C. W. J., & Hyung, N. (2004). Occasional structural breaks and long memory with an application to the SP 500 absolute stock returns. Journal of Empirical Finance , 11, 399421.CrossRefGoogle Scholar
Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica , 57, 357384.CrossRefGoogle Scholar
Hillebrand, E. (2005). Neglecting parameter changes in GARCH models. Journal of Econometrics , 129, 121138.CrossRefGoogle Scholar
Hwang, J., & Sun, Y. (2017). Asymptotic F and t tests in an efficient GMM setting. Journal of Econometrics , 198, 277295.CrossRefGoogle Scholar
Ibragimov, R., Kattuman, P., & Skrobotov, A. (2021). Robust inference on income inequality: t-statistic based approaches. Preprint, arXiv:2105.05335.Google Scholar
Ibragimov, R., & Müller, U. K. (2010). t-statistic based correlation and heterogeneity robust inference. Journal of Business & Economic Statistics , 28, 453468.CrossRefGoogle Scholar
Janas, D. (1994). Edgeworth expansions for spectral mean estimates with applications to Whittle estimates. Annals of the Institute of Statistical Mathematics , 46, 667682.CrossRefGoogle Scholar
Jansson, M. (2004). The error in rejection probability of simple autocorrelation robust tests. Econometrica , 72, 937946.CrossRefGoogle Scholar
Juhl, T., & Xiao, Z. (2009). Testing for changing mean with monotonic power. Journal of Econometrics , 148, 1424.CrossRefGoogle Scholar
Kiefer, N. M., & Vogelsang, T. J. (2002). Heteroskedasticity-autocorrelation robust standard errors using the Bartlett kernel without truncation. Econometrica , 70, 20932095.CrossRefGoogle Scholar
Kiefer, N. M., & Vogelsang, T. J. (2005). A new asymptotic theory for heteroskedasticity-autocorrelation robust tests. Econometric Theory , 21, 11301164.CrossRefGoogle Scholar
Kiefer, N. M., Vogelsang, T. J., & Bunzel, H. (2000). Simple robust testing of regression hypotheses. Econometrica , 69, 695714.CrossRefGoogle Scholar
Kim, D., & Perron, P. (2009). Assessing the relative power of structural break tests using a framework based on the approximate Bahadur slope. Journal of Econometrics , 149, 2651.CrossRefGoogle Scholar
Lamoureux, C. G., & Lastrapes, W. D. (1990). Persistence in variance, structural change, and the GARCH model. Journal of Business and Economic Statistics , 8, 225234.CrossRefGoogle Scholar
Lazarus, E., Lewis, D. J., & Stock, J. H. (2020). The size-power tradeoff in HAR inference. Econometrica , 89, 24972516.CrossRefGoogle Scholar
Lazarus, E., Lewis, D. J., Stock, J. H., & Watson, M. W. (2018). HAR inference: recommendations for practice. Journal of Business and Economic Statistics , 36, 541559.CrossRefGoogle Scholar
Martins, L., & Perron, P. (2016). Improved tests for forecast comparisons in the presence of instabilities. Journal of Time Series Analysis , 37, 650659.CrossRefGoogle Scholar
McCloskey, A., & Hill, J. B. (2017). Parameter estimation robust to low frequency contamination. Journal of Business and Economic Statistics , 35, 598610.CrossRefGoogle Scholar
Mikosch, T., & Stărica, C. (2004). Nonstationarities in financial time series, the long-range dependence, and the IGARCH effects. Review of Economics and Statistics , 86, 378390.CrossRefGoogle Scholar
Müller, U. K. (2007). A theory of robust long-run variance estimation. Journal of Econometrics , 141, 13311352.CrossRefGoogle Scholar
Müller, U. K. (2014). HAC corrections for strongly autocorrelated time series. Journal of Business and Economic Statistics , 32, 311322.CrossRefGoogle Scholar
Müller, U. K., & Watson, M. W. (2008). Testing models of low-frequency variability. Econometrica , 76, 9791016.Google Scholar
Newey, W. K., & West, K. D. (1987). A simple positive semidefinite, heteroskedastic and autocorrelation consistent covariance matrix. Econometrica , 55, 703708.CrossRefGoogle Scholar
Newey, W. K., & West, K. D. (1994). Automatic lag selection in covariance matrix estimation. Review of Economic Studies , 61, 631653.CrossRefGoogle Scholar
Ng, S., & Perron, P. (1996). The exact error in estimating the spectral density at the origin. Journal of Time Series Analysis , 17, 379408.CrossRefGoogle Scholar
Ng, S., & Wright, J. H. (2013). Facts and challenges from the great recession for forecasting and macroeconomic modeling. Journal of Economic Literature , 51, 11201154.CrossRefGoogle Scholar
Otto, S., & Breitung, J. (2023). Backward CUSUM for testing and monitoring structural change. Econometric Theory , 39, 659692.CrossRefGoogle Scholar
Percival, D. (1992). Three curious properties of the sample variance and autocovariance for stationary processes with unknown mean. American Statistician , 47, 274276.CrossRefGoogle Scholar
Perron, P. (1989). The great crash, the oil price shock and the unit root hypothesis. Econometrica , 57, 13611401.CrossRefGoogle Scholar
Perron, P. (1990). Testing for a unit root in a time series with a changing mean. Journal of Business and Economic Statistics , 8, 153162.CrossRefGoogle Scholar
Perron, P. (1991). A test for changes in a polynomial trend function for a dynamic time series. Research Memorandum No. 363. Econometrics Research Program, Princeton University.Google Scholar
Perron, P., & Qu, Z. (2010). Long-memory and level shifts in the volatility of stock market return indices. Journal of Business and Economic Statistics , 28, 275290.CrossRefGoogle Scholar
Perron, P., & Yamamoto, Y. (2021). Testing for changes in forecast performance. Journal of Business and Economic Statistics , 39, 148165.CrossRefGoogle Scholar
Phillips, P. C. B. (1977). Approximations to some finite sample distributions associated with a first-order stochastic difference equation. Econometrica , 45, 463485.CrossRefGoogle Scholar
Phillips, P. C. B. (1980). Finite sample theory and the distributions of alternative estimators of the marginal propensity to consume. Review of Economic Studies , 47, 183224.CrossRefGoogle Scholar
Phillips, P. C. B. (2005). HAC estimation by automated regression. Econometric Theory , 21, 116142.CrossRefGoogle Scholar
Politis, D. M. (2011). Higher-order accurate, positive semidefinite estimation of large-sample covariance and spectral density matrices. Econometric Theory , 27, 703744.CrossRefGoogle Scholar
Pötscher, B. M., & Preinerstorfer, D. (2018). Controlling the size of autocorrelation robust tests. Journal of Econometrics , 207, 406431.CrossRefGoogle Scholar
Pötscher, B. M., & Preinerstorfer, D. (2019). Further results on size and power of heteroskedasticity and autocorrelation robust tests, with an application to trend testing. Electronic Journal of Statistics , 13, 38933942.CrossRefGoogle Scholar
Preinerstorfer, D., & Pötscher, B. M. (2016). On size and power of heteroskedasticity and autocorrelation robust tests. Econometric Theory , 32, 261358.CrossRefGoogle Scholar
Qu, Z., & Perron, P. (2007). Estimating and testing structural changes in multivariate regressions. Econometrica , 75, 459502.CrossRefGoogle Scholar
Qu, Z., & Zhuo, F. (2020). Likelihood ratio based tests for Markov regime switching. Review of Economic Studies , 88, 937968.CrossRefGoogle Scholar
Robinson, P. M. (1998). Inference without smoothing in the presence of nonparametric autocorrelation. Econometrica , 66, 11631182.CrossRefGoogle Scholar
Shao, X., & Zhang, X. (2010). Testing for change points in time series. Journal of the American Statistical Association , 105, 1221240.CrossRefGoogle Scholar
Stock, J. H., & Watson, M. W. (1996). Evidence on structural stability in macroeconomic time series. Journal of Business and Economic Statistics , 14, 1130.CrossRefGoogle Scholar
Sun, Y. (2013). Heteroscedasticity and autocorrelation robust F test using orthonormal series variance estimator. Econometrics Journal , 16, 126.CrossRefGoogle Scholar
Sun, Y. (2014a). Fixed-smoothing asymptotics in a two-step GMM framework. Econometrica , 82, 23272370.CrossRefGoogle Scholar
Sun, Y. (2014b). Let’s fix it: fixed-b asymptotics versus small-b asymptotics in heteroskedasticity and autocorrelation robust inference. Journal of Econometrics , 178, 659677.CrossRefGoogle Scholar
Sun, Y., Phillips, P. C. B., & Jin, S. (2008). Optimal bandwidth selection in heteroskedasticity-autocorrelation robust testing. Econometrica , 76, 175194.CrossRefGoogle Scholar
Taniguchi, M., & Puri, M. L. (1996). Valid Edgeworth expansions of M-estimators in regression models with weakly dependent residuals. Econometric Theory , 12, 331346.CrossRefGoogle Scholar
Velasco, C., & Robinson, P. M. (2001). Edgeworth expansions for spectral density estimates and studentized sample mean. Econometric Theory , 17, 497539.CrossRefGoogle Scholar
Vogelsang, T. J. (1999). Sources of nonmonotonic power when testing for a shift in mean of a dynamic time series. Journal of Econometrics , 88, 283299.CrossRefGoogle Scholar
West, K. D. (1996). Asymptotic inference about predictive ability. Econometrica , 64, 10671084.CrossRefGoogle Scholar
Whilelm, D. (2015). Optimal bandwidth selection for robust generalized methods of moments estimation. Econometric Theory , 31, 10541077.CrossRefGoogle Scholar
Zhang, T., & Lavitas, L. (2018). Unsupervised self-normalized change-point testing for time series. Journal of the American Statistical Association , 113, 637648.CrossRefGoogle Scholar
Zhang, X., & Shao, X. (2013). Fixed-smoothing asymptotics for time series. Annals of Statistics , 41, 13291349.CrossRefGoogle Scholar
Supplementary material: File

Casini et al. supplementary material

Casini et al. supplementary material
Download Casini et al. supplementary material(File)
File 945.6 KB