No CrossRef data available.
Published online by Cambridge University Press: 11 September 2023
Tests based on heteroskedasticity robust standard errors are an important technique in econometric practice. Choosing the right critical value, however, is not simple at all: conventional critical values based on asymptotics often lead to severe size distortions, and so do existing adjustments including the bootstrap. To avoid these issues, we suggest to use smallest size-controlling critical values, the generic existence of which we prove in this article for the commonly used test statistics. Furthermore, sufficient and often also necessary conditions for their existence are given that are easy to check. Granted their existence, these critical values are the canonical choice: larger critical values result in unnecessary power loss, whereas smaller critical values lead to overrejections under the null hypothesis, make spurious discoveries more likely, and thus are invalid. We suggest algorithms to numerically determine the proposed critical values and provide implementations in accompanying software. Finally, we numerically study the behavior of the proposed testing procedures, including their power properties.
Financial support of the second author by the Program of Concerted Research Actions (ARC) of the Université libre de Bruxelles in an early stage of this project is gratefully acknowledged. We thank two referees, a Co-Editor, and the Editor for helpful comments.