Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T04:55:49.406Z Has data issue: false hasContentIssue false

FIVE DECADES OF DECLINE FOR OLD-GROWTH INDICATOR LICHENS IN SCOTLAND

Published online by Cambridge University Press:  30 May 2019

C. J. Ellis*
Affiliation:
Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, Scotland, UK. E-mail for correspondence: cellis@rbge.org.uk
B. J. Coppins
Affiliation:
Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, Scotland, UK. E-mail for correspondence: cellis@rbge.org.uk
Get access

Abstract

Systematic data collection for direct statistical analysis of biodiversity trends tends to be focused on charismatic fauna and flora such as birds or vascular plants. When subsequently applied by conservation agencies in summary metrics tracking habitat and species protection, these patterns in biodiversity loss or gain can fail to capture outcomes for groups that have a prominent importance in habitat composition, diversity and ecological function, such as algae, bryophytes, lichens and other fungi. Such species are primarily recorded on an ad hoc basis by taxonomic specialists, yielding noisy data that present problems in robustly identifying trends. This study explored the use of ad hoc field-recorded data as a potential source of biodiversity information, by comparing the pattern of recording for carefully selected indicator species with those for benchmark or control species as a proxy for recording effort. Focusing on Scotland’s internationally important epiphytic lichens, and especially ‘old-growth’ indicator species, British Lichen Society data revealed a decline in the extent of these species in Scotland, relative to recording effort, over a period of five decades. A recent slowing in the rate of decline is observed but remains to be confirmed. The long-term decline is consistent with the effect of land use intensification, resulting in small and isolated populations that are vulnerable to extinction debt. We caution that remedial protection and monitoring for such populations remains vital as a complement to Scotland’s larger scale ambition for increased woodland extent and connectivity.

Type
Articles
Copyright
© Trustees of the Royal Botanic Garden Edinburgh (2019) 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anonymous (2006). The Scottish Forestry Strategy. Edinburgh: Forestry Commission Scotland.Google Scholar
Berglund, H. & Jonsson, B. G. (2005). Verifying an extinction debt among lichens and fungi in northern Swedish boreal forests. Conservation Biol. 19(2): 338348.CrossRefGoogle Scholar
Binder, M. D. & Ellis, C. J. (2008). Conservation of the rare British lichen Vulpicida pinastri: changing climate, habitat loss and strategies for mitigation. Lichenologist 40(1): 6379.CrossRefGoogle Scholar
Blom, H. H. & Lindblom, L. (2010). Degelia cyanoloma (Schaer.) H. H. Blom & L. Lindblom comb. et stat. nov., a distinct species from western Europe. Lichenologist 42(1): 2327.CrossRefGoogle Scholar
Bogomazova, K. (2018). Identification of Species Limits: Clarifying the Taxonomy and Ecology of BAP Lichens. Ph.D. thesis, University of Aberdeen.Google Scholar
Convention on Biological Diversity (no date). Aichi Biodiversity Targets. Online. Available: https://www.cbd.int/sp/targets/ Google Scholar
Coppins, A. M. & Coppins, B. J. (2002). Indices of Ecological Continuity for Woodland Epiphytic Lichen Habitats in the British Isles. London: British Lichen Society.Google Scholar
Davies, C. E., Moss, D. & Hill, M. O. (2004). EUNIS Habitat Classification Revised 2004. Report to the European Environment Agency, European Topic Centre on Nature Protection and Biodiversity. Copenhagen: European Environment Agency.Google Scholar
Dennis, E. B., Morgan, B. J. T., Bereton, T. M., Roy, D. B. & Fox, R. (2017). Using citizen science butterfly counts to predict species population trends. Conservation Biol. 31(6): 13501361.CrossRefGoogle ScholarPubMed
Dettki, H., Klintberg, P. & Esseen, P.-A. (2000). Are epiphytic lichens in young forests limited by local dispersal? Écoscience 7(3): 317325.CrossRefGoogle Scholar
Ellis, C. J. (2014). Ancient woodland indicators signal the climate change risk for dispersal-limited species. Ecol. Indicators 53: 106114.CrossRefGoogle Scholar
Ellis, C. J. (2016). Oceanic and temperate rainforest climates and their epiphyte indicators in Britain. Ecol. Indicators 70: 125133.CrossRefGoogle Scholar
Ellis, C. J. & Coppins, B. J. (2007). 19th century woodland structure controls stand-scale epiphyte diversity in present-day Scotland. Diversity & Distrib. 13(1): 8491.CrossRefGoogle Scholar
Ellis, C. J., Coppins, B. J. & Dawson, T. P. (2007). Predicted response of the lichen epiphyte Lecanora populicola to climate change scenarios in a clean-air region of northern Britain. Biol. Conservation 135(3): 396404.CrossRefGoogle Scholar
Ellis, C. J., Yahr, R. & Coppins, B. J. (2009). Local extent of old-growth woodland modifies epiphyte response to climate change. J. Biogeogr. 36(2): 302313.CrossRefGoogle Scholar
Ellis, C. J., Eaton, S., Theodoropoulos, M., Coppins, B. J., Seaward, M. R. D. & Simkin, J. (2014). Response of epiphytic lichens to 21st Century climate change and tree disease scenarios. Biol. Conservation 180: 153164.CrossRefGoogle Scholar
Ellis, C. J., Eaton, S., Theodoropoulos, M., Coppins, B.J., Seaward, M. R. D. & Simkin, J. (2015a). Lichen Epiphyte Scenarios. A Toolkit of Climate and Woodland Change for the 21st Century. Edinburgh: Royal Botanic Garden Edinburgh.Google Scholar
Ellis, C. J., Eaton, S., Theodoropoulos, M. & Elliott, K. (2015b). Epiphyte Communities and Indicator Species. An Ecological Guide for Scotland’s Woodlands. Edinburgh: Royal Botanic Garden Edinburgh.Google Scholar
Gibby, M. (2003). Overview of Scottish plant conservation: problems, research needs and policy issues. Bot. J. Scotland 55(1): 15.CrossRefGoogle Scholar
Harrison, P. J., Yuan, Y., Buckland, S. T., Oedekoven, C. S., Elston, D. A., Brewer, M. J., Johnston, A. & Pearce-Higgins, J. W. (2016). Quantifying turnover in biodiversity of British breeding birds. J. Appl. Ecol. 53(2): 469478.CrossRefGoogle Scholar
Hill, M. O. (2012). Local frequency as a key to interpreting species occurrence data when recording effort is not known. Meth. Ecol. Evol. 3(1): 195205.CrossRefGoogle Scholar
Isaac, N. J. B., van Strien, A. J., August, T. A., de Zeeuw, M. P. & Roy, D. B. (2014). Statistics for citizen science: extracting signals of change from noisy ecological data. Meth. Ecol. Evol. 5(10): 10521060.CrossRefGoogle Scholar
Johansson, V., Ranius, T. & Snäll, T. (2013). Epiphyte metapopulation persistence after drastic habitat decline and low tree regeneration: time-lags and effects of conservation actions. J. Appl. Ecol. 50(2): 414422.CrossRefGoogle Scholar
Loh, J., Green, R. E., Ricketts, T., Lamoreux, J., Jenkins, M., Kapos, V. & Randers, J. (2005). The Living Planet Index: using species population time series to track trends in biodiversity. Philos. Trans., Ser. B. 360(1454): 289295.CrossRefGoogle ScholarPubMed
Lõhmus, A. & Lõhmus, P. (2011). Old-forest species: the importance of specific substrata vs. stand continuity in the case of calicioid fungi. Silva Fenn. 45(5): 10151039.CrossRefGoogle Scholar
Magain, N. & Sérusiaux, E. (2015). Dismantling the treasured flagship lichen Sticta fuliginosa (Peltigerales) into four species in Western Europe. Mycol. Progr. 14: 97 CrossRefGoogle Scholar
NBN Atlas Scotland (no date). Online. Available: https://scotland.nbnatlas.org/ Google Scholar
Ohlson, M., Söderström, L., Hörnberg, G., Zackrisson, O. & Hermansson, J. (1997). Habitat qualities versus long-term continuity as determinants of biodiversity in boreal old-growth swamp forests. Biol. Conservation 81(3): 221231.CrossRefGoogle Scholar
Patterson, G., Nelson, D., Robertson, P. & Tullis, J. (2014). Scotland’s Native Woodlands. Edinburgh: Forestry Commission Scotland.Google Scholar
Roberts, A. J., Russell, C., Walker, G. J. & Kirby, K. J. (1992). Regional variation in the origin, extent and composition of Scottish woodland. Bot. J. Scotland 46(2): 167189.CrossRefGoogle Scholar
Scotland’s Environment (no date a). Protected Nature Sites. Online. Available: https://www.environment.gov.scot/data/data-analysis/protected-nature-sites/ (accessed 5 November 2018).Google Scholar
Scotland’s Environment (no date b). Ecosystem Health Indicators. Online. Available: https://www.environment.gov.scot/our-environment/state-of-the-environment/ecosystem-health-indicators/ (accessed 5 November 2018).Google Scholar
Scottish Natural Heritage (no date a). Scotland’s Natural Capital Asset Index. Online. Available: https://www.nature.scot/scotlands-natural-capital-asset-index-0 Google Scholar
Scottish Natural Heritage (no date b). Developing Ecosystem Health Indicators for Scotland. Online. Available: https://www.nature.scot/developing-ecosystem-health-indicators-scotland Google Scholar
Seed, L., Wolseley, P., Gosling, L., Davies, L. & Power, S. A. (2013). Modelling relationships between lichen bioindicators, air quality and climate on a national scale: results from the UK OPAL survey. Environm. Pollut. 182: 437447.CrossRefGoogle ScholarPubMed
Sillett, S. C., McCune, B., Peck, J. E., Rambo, T. R. & Ruchty, A. (2000). Dispersal limitations of epiphytic lichens result in species dependent on old-growth forests. Ecol. Applic. 10(3): 789799.CrossRefGoogle Scholar
Simkin, J. (2012). The BLS database project. Bull. Brit. Lichen Soc. 111: 814.Google Scholar
Smith, C. W., Aptroot, A., Coppins, B. J., Fletcher, A., Gilbert, O. L., James, P. W., & Wolseley, P. A. (eds) (2009) The Lichens of Great Britain and Ireland. London: British Lichen Society.Google Scholar
Strachan, I. M. (2017). Manual of Terrestrial EUNIS Habitats in Scotland. Version 2. Scottish Natural Heritage Commissioned Report No. 766. Inverness: Scottish Natural Heritage.Google Scholar
Telfer, M. G., Preston, C. D. & Rothery, P. (2002). A general method for measuring relative change in range size from biological atlas data. Biol. Conservation 107(1): 99109.CrossRefGoogle Scholar
Welden, N. A., Wolseley, P. A. & Ashmore, M. R. (2018). Citizen science identifies the effects of nitrogen deposition, climate and tree species on epiphytic lichens across the UK. Environm, Pollut. 232: 8089.CrossRefGoogle ScholarPubMed
Whittet, R. & Ellis, C. J. (2013). Critical tests for lichen indicators of woodland ecological continuity. Biol. Conservation 168: 1923.CrossRefGoogle Scholar
Wood, C. M., Smart, S. M., Bunce, R. G. H., Norton, L. R., Maskell, L. C., Howard, D. C., Scott, W. A. & Henrys, P. A. (2017). Long-term vegetation monitoring in Great Britain– the Countryside Survey 1978-2007 and beyond. Earth System Sci. Data 9: 445459.CrossRefGoogle Scholar