Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T06:49:53.489Z Has data issue: false hasContentIssue false

IDENTIFYING CONSERVATION PRIORITY AREAS IN THE MARAÑÓN VALLEY (PERU) BASED ON FLORISTIC INVENTORIES

Published online by Cambridge University Press:  24 November 2015

J. L. Marcelo-Peña*
Affiliation:
Herbario Forestales (MOL), Manejo Forestal, Facultad de Ciencias Forestales, Universidad Nacional Agraria La Molina, Avenida La Universidad, Apartado 456, Lima 12, Peru. Departamento de Ciências Florestais, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Avenida Pádua Dias 11, CEP 13418-900, Caixa postal 09, Piracicaba, São Paulo, Brazil.
I. Huamantupa
Affiliation:
Herbario Vargas (CUZ), Facultad de Ciencias Biológicas, Universidad Nacional San Antonio Abad del Cusco, Apartado 367, Cusco, Peru. E-mail: andeanwaya@gmail.com
T. Särkinen
Affiliation:
Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK.
M. Tomazello
Affiliation:
Departamento de Ciências Florestais, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Avenida Pádua Dias 11, CEP 13418-900, Caixa postal 09, Piracicaba, São Paulo, Brazil.
*
*E-mail for correspondence: jlmarcelop@lamolina.edu.pe
Get access

Abstract

In this study, we report species diversity and endemism of the poorly known but highly diverse Seasonally Dry Tropical Forest (SDTF) flora of the Marañón valley in northern Peru. We characterise woody vascular plant species diversity across the valley in order to define the conservation value of the area at national and international level. Based on 32 rapid botanical inventories, 92 plots of 50 × 20 m, and a herbarium study across local and international herbaria, we report 440 woody vascular plant species of which 143 (33%) are endemic to the valley. Two centres of endemism within the valley are identified, each with clear elevational zonation of diversity. Data show that the Marañón valley is a good representative of Peruvian SDTFs as a whole, with an average of 56% SDTF species and 78% SDTF genera found in the one valley. The results show that there is wide variation in the set of dominant species across the valley, and that many local endemics are locally abundant unlike in neighbouring SDTFs where the dominant species are all geographically widespread. Our results demonstrate that the Marañón includes a rare combination of both nationally representative yet globally unique plant species, which makes the valley an ideal conservation target. The high level of endemism structured within elevational zones implies that conservation areas should be established across elevational zones in order to maximise the protection of this globally unique flora.

Type
Articles
Copyright
Copyright © Trustees of the Royal Botanic Garden Edinburgh 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguirre, M. Z., Linares-Palomino, R. & Kvist, L. P. (2006). Especies leñosas y formaciones vegetales en los bosques estacionalmente secos de Ecuador y Perú. Arnaldoa 13: 324350.Google Scholar
Aguirre, Z. & Kvist, L. P. (2005). Composición florística y estado de conservación de los bosques secos del sur-occidente del Ecuador. Lyonia 8: 4167.Google Scholar
AMEC (2011). Estudio de impacto ambiental del proyecto Central Hidrolectrica Chadín 2. Regiones Amazonas y Cajamarca. Preparado para: AC. ENERGIA S.A., ODEBRECH energia. Proyecto N° 165725. 50 pp.Google Scholar
Ángulo, F., et al. (2008). Corredor de Conservación de Aves Marañón – Alto Mayo: Análisis de Distribución de Aves de Alta Prioridad de Conservación e Identificación de Propuestas de Áreas para su Conservación. Lima, Perú: Asociación Ecosistemas Andinos – American Bird Conservancy.146 pp.Google Scholar
APG, III (2009). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 161: 105121.Google Scholar
BirdLife International (2006). Monitoring Important Bird Areas: A Global Framework, Version 1.2. Cambridge: BirdLife International.Google Scholar
Brako, L. & Zarucchi, J. (1993). Catálogo de las Angiospermas y Gimnospermas del Perú. St Louis, MO: Missouri Botanical Garden.Google Scholar
Bridgewater, S., et al. (2003). A preliminary floristic and phytogeographic analysis of the woody flora of seasonally dry forests in northern Peru. Candollea 58: 129148.Google Scholar
Chazdon, R. L., Colwell, R. K., Denslow, J. S. & Guariguata, M. R. (1998). Statistical methods for estimating species richness of woody regeneration in primary and secondary rain forests of NE Costa Rica. In: Dallmeier, F. & Comiskey, J. A. (eds) Forest Biodiversity Research, Monitoring and Modeling: Conceptual Background and Old World Case Studies, pp. 285309. Paris: Parthenon Publishing.Google Scholar
Colwell, R. K. & Coddington, J. A. (1994). Estimating terrestrial biodiversity through extrapolation. Philos. Trans., Ser. B 345: 101118.Google Scholar
Development Core Team (2008). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available at: www.R-project.orgGoogle Scholar
Fajardo, L., et al. (2005). Tropical dry forests of Venezuela: characterization and current conservation status. Biotropica 37(4): 531546.Google Scholar
Ferreyra, R. (1996). Comunidades vegetales de la cuenca superior de los ríos: Marañón, Huallaga y Ucayali. Documento Técnico N° 27. Iquitos, Perú: IIAP.Google Scholar
Finer, M. & Jenkins, C. N. (2012). Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity. PLoS ONE 7(4): e35126. doi:10.1371/journal.pone.0035126CrossRefGoogle ScholarPubMed
Gentry, A. H. (1982). Patterns of neotropical plant species diversity. Evol. Biol. 15: 184.Google Scholar
Gentry, A. H. (1988). Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann. Missouri Bot. Gard. 75: 134.CrossRefGoogle Scholar
Gentry, A. H. (1992). Bignoniaceae Part II (Tribe Tecomeae). Fl. Neotrop. Monogr. 25: 1370.Google Scholar
Gentry, A. H. (1995). Diversity and floristic composition of neotropical dry forests. In: Bullock, S. H., Mooney, H. A. & Medina, E. (eds) Seasonally Dry Tropical Forests, pp. 1146. Cambridge, UK: Cambridge University Press.Google Scholar
Giulietti, A. M., et al. (2004). Biodiversidade da Caatinga: áreas e ações prioritárias para a conservação. In: Silva, J. M. C., Tabarelli, M., Fonseca, M. & Lins, L. (eds) Diagnóstico da vegetação nativa do bioma Caatinga, pp. 4890. Brasília: Ministério do Meio Ambiente.Google Scholar
Gordon, J. E., et al. (2004). Assessing landscapes: a case study of tree and shrub diversity in the seasonally dry tropical forest of Oaxaca, Mexico and southern Honduras. Biol. Conserv. 117: 429442.Google Scholar
Hawthorne, W. D. & Abu-Juam, M. (1995). Forest Protection in Ghana with Particular Reference to Vegetation and Plant Species. Forest Inventory and Management Project Planning Branch, Forestry Department Kumasi, Ghana, IUCN/ODA/Forest Department Republic of Ghana.Google Scholar
Hensold, R. (1999). Las angiospermas del Departamento de Cajamarca, Perú. Arnaldoa 6: 141184.Google Scholar
Hughes, C., et al. (2003). A new Palo Verde (Parkinsonia – Leguminosae: Caesalpinioideae) from Peru. Kew Bull. 58: 467472.Google Scholar
Hughes, C., et al. (2004). Maraniona, a new Dalbergioid legume genus (Leguminosae: Papilionoideae) from Peru. Syst. Bot. 29: 366374.Google Scholar
Humboldt, A., et al. (1815–1825). Nova genera et species plantarum. Paris: Librariae Graeco-Latino-Germanico.Google Scholar
INGEMET (1999). Mapa geológico del Perú. Lima: Instituto Geológico Minero y Metalúrgico.Google Scholar
IUCN (2001). IUCN Red List Categories and Criteria, Version 3.1. Gland and Cambridge: IUCN Species Survival Commission.Google Scholar
Jackson, S. T., et al. (2009). Ecology and the ratchet of events: climate variability, niche dimensions, and species distributions. Proc. Natl. Acad. Sci. U.S.A. 106(2): 1968519692.Google Scholar
Killeen, T. J., et al. (2007). Dry spots and wet spots in the Andean hotspot. J. Biogeogr. 34: 13571373.Google Scholar
Koch, C. & Beraún, A. M. (2011). Notes on geographic distribution: Squamata, Phyllodactylidae, Phyllodactylus thompsoni Venegas, Townsend, Koch and Böhme, 2008 and Phyllodactylus delsolari Venegas, Townsend, Koch and Böhme, 2008: Latitudinal and altitudinal distribution extension and geographic distribution map. Check List 7(3): 272275.Google Scholar
Koch, C., et al. (2006). A remarkable discovery: description of a big-growing new gecko (Squamata: Gekkonidae: Phyllopezus) from northwestern Peru. Salamandra 42(2/3): 145150.Google Scholar
Koch, C., et al. (2013). Two new endemic species of Ameiva (Squamata: Teiidae) from the dry forest of northwestern Peru and additional information on Ameiva concolor Ruthven, 1924. Zootaxa 3745(2): 263295.CrossRefGoogle ScholarPubMed
Lawesson, J. E., et al. (1987). An updated and annotated check list of the vascular plants of the Galápagos Islands. Aarhus: Aarhus University Press.Google Scholar
Leal-Pinedo, J. M. & Linares-Palomino, R. (2005). Los bosques secos de la Reserva de Biosfera del Noroeste (Perú): diversidad arbórea y estado de conservación. Caldasia 27(2): 195211.Google Scholar
León, B., et al. (2006). El libro rojo de las plantas endémicas del Perú. Revista Peru. Biol. 13(2): 1967.Google Scholar
Lewis, G. P., et al. (2010). Three new legumes endemic to the Marañón valley, Peru. Kew Bull. 65: 209220.Google Scholar
Linares-Palomino, R. (2002). A floristic and phytogeographic analysis of Peruvian seasonally dry tropical forest. MSc Dissertation, The Biodiversity and Taxonomy of Plants, Royal Botanic Garden Edinburgh, University of Edinburgh. 109 pp.Google Scholar
Linares-Palomino, R. (2004). Los Bosques Tropicales Estacionalmente Secos: I. El concepto de los bosques secos en el Perú. Arnaldoa 11: 85102.Google Scholar
Linares-Palomino, R. (2006). Phytogeography and floristics of seasonally dry forests in Perú. In: Pennington, R. T., Lewis, G. P. & Ratter, J. A. (eds) Neotropical Savannas and Seasonally Dry Forests: Plant Diversity, Biogeography and Conservation, pp. 257279. Oxford: Taylor & Francis/CRC Press.Google Scholar
Linares-Palomino, R. & Pennington, R. T. (2007). Lista anotada de plantas leñosas en bosques estacionalmente secos del Perú – una nueva herramienta en Internet para estudios taxonómicos, ecológicos y de biodiversidad. Arnaldoa 14: 149152.Google Scholar
Linares-Palomino, R., et al. (2010). Diversity and endemism of woody plant species in the equatorial pacific seasonally dry forest. Biodivers. Conserv. 19: 169185.Google Scholar
Linares-Palomino, R., et al. (2011). Neotropical seasonally dry forests: diversity, endemism, and biogeography of woody plants. In: Dirzo, R., Mooney, H., Ceballos, G. & Young, H. (eds) Seasonally Dry Tropical Forests: Ecology and Conservation, pp. 321. Washington, DC: Island Press.CrossRefGoogle Scholar
Marcelo-Peña, J. L. (2008). Vegetación leñosa, endemismos y estado de conservación en los bosques estacionalmente secos de Jaén, Perú. Revista Peru. Biol. 15: 4352.Google Scholar
Marcelo-Peña, J. L., et al. (2007). Diversidad, composición florística y endemismos en los bosques estacionalmente secos alterados del distrito de Jaén, Perú. Ecología Aplicada 6(1,2): 1022.Google Scholar
Marcelo-Peña, J. L., et al. (2010). Guía ilustrada de la flora leñosa de los bosques estacionalmente secos de Jaén, Perú. Lima: Universidad Nacional Agraria La Molina/Royal Botanic Garden Edinburgh.Google Scholar
MINAM (2012). El Perú de los Bosques. Ministerio de Agricultura, GTZ y PROFONANPE.Google Scholar
Moro, M. F., et al. (2014). A catalogue of the vascular plants of the Caatinga Phytogeographical Domain: a synthesis of floristic and phytosociological surveys. Phytotaxa 160: 1118.Google Scholar
Murphy, P. & Lugo, A. E. (1986). Ecology of tropical dry forests. Annu. Rev. Ecol. Syst. 17: 6788.Google Scholar
Oliveira-Filho, A. T. (2010). TreeAtlan 2.0, Tree flora of extra-Andean tropical and subtropical South America. Universidade Federal de Minas Gerais. Available at: www.icb.ufmg.br/treeatlan/open_menu.htmGoogle Scholar
Oliveira-Filho, A. T., et al. (2006). Floristic relationships of seasonally dry forests of eastern South America based on tree species distribution patterns. In: Pennington, R. T., Lewis, G. P. & Ratter, J. A. (eds) Neotropical Savannas and Seasonally Dry Forests: Plant Diversity, Biogeography and Conservation, pp. 159192. Oxford: Taylor & Francis/CRC Press.Google Scholar
Pennington, R. T., et al. (2000). Neotropical seasonally dry forests and Quaternary vegetation changes. J. Biogeogr. 27: 261273.Google Scholar
Pennington, R. T., et al. (2006). An overview of the plant diversity, biogeography and conservation of Neotropical savannas and seasonally dry forests. In: Pennington, R. T., Lewis, G. P. & Ratter, J. A. (eds) Neotropical Savannas and Seasonally Dry Forests: Plant Diversity, Biogeography and Conservation, pp. 130. Oxford: Taylor & Francis/CRC Press.Google Scholar
Pennington, R. T., et al. (2010). Differing diversification histories in the Andean biodiversity hotspot. Proc. Natl. Acad. Sci. U.S.A. 107: 1378313787.Google Scholar
Pino, G. (2008). Three new succulent Peperomias from Perú. Cactus Succ. J. 80(5): 232239.Google Scholar
Pino, G., et al. (2003). Three new taxa of Peperomia from northern Peru. Cactus Succ. J. 80: 2736.Google Scholar
Pino, G., et al. (2004). Four new taxa of Peperomia from San Marcos, northern Peru. Haseltonia 10: 8795.Google Scholar
Pino, G., et al. (2005). Four new Peperomias from northern Peru. Haseltonia 11: 103115.Google Scholar
Pino, G., et al. (2012). New succulent window-leaved Peperomias from Peru. Haseltonia 18: 326.Google Scholar
Pitman, N., et al. (2013). Oligarchies in Amazonian tree communities: a ten-year review. Ecography 36: 114123.Google Scholar
Porte, D. M. (1983). Vascular plants of the Galápagos: origins and dispersal. In: Bowman, R. I., Berson, M. & Leviton, A. E. (eds) Patterns of Evolution in Galápagos Organisms, pp. 3396. San Francisco: American Association of Advancement of Science.Google Scholar
Portillo-Quintero, C. A. & Sanchez-Azofeifa, G. A. (2010). Extent and conservation of tropical dry forests in the Americas. Biol. Conserv. 143: 144155.CrossRefGoogle Scholar
Prado, D. E. (2000). Seasonally dry forests of tropical South America: from forgotten ecosystems to a new phytogeographic unit. Edinburgh J. Bot. 57: 437461.Google Scholar
Prado, D. E. & Gibbs, P. E. (1993). Patterns of species distributions in the Dry Seasonal Forests of South America. Ann. Missouri Bot. Gard. 80: 902927.Google Scholar
Queiroz, L. P. (2006). The Brazilian caatinga: phytogeographical patterns inferred from distribution data of the Leguminosae. In: Pennington, R. T., Lewis, G. P. & Ratter, J. A. (eds) Neotropical Savannas and Seasonally Dry Forests: Plant Diversity, Biogeography and Conservation, pp. 121157. Oxford: Taylor & Francis/CRC Press.Google Scholar
Ratter, J., et al. (1978). Observations on forests of some mesotrophic soils in central Brazil. Rev. Brasil. Bot. 1: 4758.Google Scholar
Ratter, J., et al. (2003). Analysis of the floristic composition of the Brazilian cerrado vegetation. III: Comparison of the woody vegetation of 376 areas. Edinburgh J. Bot. 60: 57109.Google Scholar
Rosindell, J. & Harmon, L. J. (2013). A unified model of species immigration, extinction and abundance on islands. J. Biogeogr. 40: 11071118.CrossRefGoogle Scholar
Rosindell, J. & Phillimore, A. B. (2011). A unified model of island biogeography sheds light on the zone of radiation. Ecology Lett. 14: 552560.Google Scholar
Rzedowski, J. (1991). El endemismo en la flora fanerogámica Mexicana: una apreciación analítica preliminar. Acta Bot. Mex. 15: 4764.Google Scholar
Särkinen, T., et al. (2011a). Forgotten forests – issues and prospects in biome mapping using Seasonally Dry Tropical Forests as a case study. BMC Ecology 11: 27.Google Scholar
Särkinen, T., et al. (2011b). Underestimated endemic species diversity in the dry inter-Andean valley of the Río Marañón, northern Peru: an example from Mimosa (Leguminosae, Mimosoideae). Taxon 60: 139150.Google Scholar
Särkinen, T., et al. (2012). Evolutionary islands in the Andes: persistence and isolation explain high endemism in Andean dry tropical forests. J. Biogeogr. 39: 884900.Google Scholar
SENAMHI (2013). Datos meteorológicos. Available at: www.senamhi.gob.peGoogle Scholar
Servicio Nacional de Áreas Protegidas (2014). Mapa de áreas naturales protegidas. Lima, Perú: Ministerio del Medio Ambiente.Google Scholar
Servicio Nacional de Áreas Protegidas (2015). Sistema Nacional de Áreas naturales protegidas por el estado. Lima, Perú: Ministerio del Medio Ambiente.Google Scholar
Shaver, G. R., et al. (2000). Global warming and terrestrial ecosystems: a conceptual framework for analysis. BioScience 50: 871882.Google Scholar
Stattersfield, A. J., et al. (1998). Endemic Bird Areas of the World: Priorities for Biodiversity Conservation. BirdLife Conservation Series 7. Cambridge: BirdLife International.Google Scholar
Ter Steege, H., et al. (2013). Hyperdominance in the Amazonian tree flora. Science 342: 325327.Google Scholar
Trejo, I. & Dirzo, R. (2002). Floristic diversity of Mexican seasonally dry tropical forests. Biodivers. Conserv. 11: 20632084.Google Scholar
Tye, A. (2000). Las plantas vasculares endemicas de Galapagos. In: Valencia, R., Pitman, N., Leon-Yanez, S. & Jorgensen, P. M. (eds) Libro rojo de las plantas endemicas del Ecuador 2000, pp. 2428. Quito: Herbario QCA, Pontificia Universidad Católica del Ecuador.Google Scholar
Venegas, P. J., et al. (2008). Two new sympatric species of leaf-toed geckos (Gekkonidae: Phyllodactylus) from the Balsas region of the upper Marañón Valley, Peru. J. Herpetol. 42: 386396.Google Scholar
Weberbauer, A. (1945). El mundo vegetal de los Andes Peruanos. Lima: Estación Experimental Agrícola de La Molina, Dirección de Agricultura, Ministerio de Agricultura.Google Scholar
Weigend, M. (2002). Observations on the biogeography of the Amotape-Huancabamba zone in northern Peru. Bot. Rev. 68: 3854.Google Scholar
Werneck, F. P. (2011). The diversification of eastern South American open vegetation biomes: historical biogeography and perspectives. Quatern. Sci. Rev. 30: 16301648.Google Scholar
Williams, J. N., et al. (2010). Tropical dry forest trees and the relationship between local abundance and geographic range. J. Biogeogr. 37: 951959.Google Scholar
WWF (2009). The Terrestrial Ecoregion Database. Available at: http://worldwildlife.org/science/ecoregionsGoogle Scholar
Young, K. R., et al. (2002). Plant evolution and endemism in Andean South America: an introduction. Bot. Rev. 68(1): 421.Google Scholar