Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T13:30:00.176Z Has data issue: false hasContentIssue false

QUANTITATIVE ASSESSMENT OF ANISOCOTYLY IN HABERLEA RHODOPENSIS AND RAMONDA MYCONI

Published online by Cambridge University Press:  18 June 2019

B.-H. Huang
Affiliation:
National Taiwan Normal University, 88 Ting-Chow Road, Section 4, Taipei 116, Taiwan.
K. Nishii
Affiliation:
Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, Scotland, UK. E-mail for correspondence: knishii@rbge.org.uk Kanagawa University, 2946 Tsuchiya, Hiratsuka-shi, Kanagawa 259-1293, Japan.
C.-N. Wang
Affiliation:
National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan.
M. Möller
Affiliation:
Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, Scotland, UK. E-mail for correspondence: knishii@rbge.org.uk
Get access

Abstract

Anisocotyly, the unequal development of cotyledons post germination, is a unique trait observed only in Old World Gesneriaceae (Lamiales). New World Gesneriaceae have isocotylous seedlings. In both Old and New World Gesneriaceae, cotyledons initially grow equally for a short period just after germination. In the New World species, both cotyledons cease their growth at the same time early on, whereas in Old World species one cotyledon continues to expand to become a macrocotyledon while the other withers away. In this study, cotyledon growth was observed in two European Old World Gesneriaceae: Haberlea rhodopensis and Ramonda myconi. The results were compared with those for the typical anisocotylous species Streptocarpus rexii and the typical isocotylous species Corytoplectus speciosus. We found that the cotyledon growth patterns in Haberlea rhodopensis and Ramonda myconi were intermediate between the typical anisocotylous or isocotylous species. Haberlea rhodopensis and Ramonda myconi showed irregular growth patterns, with some plants being slightly anisocotylous but most being isocotylous. The developmental basis for the residual anisocotyly, the extended basal meristem activity in the macrocotyledon, appeared to be identical in the European species to that in the typical Old World Streptocarpus rexii but weakly expressed, rare and terminated early. In conclusion, European Gesneriaceae retain a reduced anisocotylous growth that may be linked to their early plumule development.

Type
Articles
Copyright
© Trustees of the Royal Botanic Garden Edinburgh (2019) 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Both authors have equally contributed to this work.

References

Burtt, B. L. (1963). Studies in the Gesneriaceae of the Old World, XXIV: tentative keys to the tribes and genera. Notes Roy. Bot. Gard. Edinburgh 24(3): 205220.Google Scholar
Burtt, B. L. (1970). Studies in the Gesneriaceae of the Old World XXXI: some aspects of functional evolution. Notes Roy. Bot. Gard. Edinburgh 30(1): 19.Google Scholar
Burtt, B. L. & Woods, P. J. B. (1958). The seedling stages of Aeschynanthus. Notes Roy. Bot. Gard. Edinburgh 22(4): 315317.Google Scholar
Caspary, R. (1858). Über die Anisocotylie von Streptocarpus polyanthus Hook. und Streptocarpus rexii Lindl. Verh. Naturhist. Vereins Preuss. Rheinl. Westphalens 15.Google Scholar
Crocker, C. W. (1860). Notes on the germination of certain species of Cyrtandreae. J. Proc. Linn. Soc., Bot. 5(18): 6567.Google Scholar
Fritsch, K. (1904). Die Keimpflanzen der Gesneriaceen mit besonderer Berücksichtigung von Streptocarpus, nebst vergleichenden Studien über die Morphologie dieser Familie. Jena: Fischer Verlag.Google Scholar
Hill, A. W. (1938). The monocotylous seedlings of certain dicotyledons. With special reference to the Gesneriaceae. Ann. Bot. 2(1): 127143.CrossRefGoogle Scholar
Hilliard, O. M. & Burtt, B. L. (1971). Streptocarpus. An African Plant Study. Pietermaritzburg: Natal University Press.Google Scholar
Imaichi, R., Nagumo, S. & Kato, M. (2000). Ontogenetic anatomy of Streptocarpus grandis (Gesneriaceae) with implications for evolution of monophylly. Ann. Bot. 86(1): 3746.CrossRefGoogle Scholar
Imaichi, R., Inokuchi, S. & Kato, M. (2001). Developmental morphology of one-leaf plant Monophyllaea singularis (Gesneriaceae). Pl. Syst. Evol. 229(3-4): 171185.CrossRefGoogle Scholar
Jong, K. (1970). Developmental aspects of vegetative morphology of Streptocarpus. Ph.D. dissertation, University of Edinburgh.Google Scholar
Jong, K. & Burtt, B. L. (1975). The evolution of morphological novelty exemplified in the growth patterns of some Gesneriaceae. New Phytol. 75(2): 297311.CrossRefGoogle Scholar
Moore, E. (1909). The study of winter buds with reference to their growth and leaf content. Bull. Torrey Bot. Club 36(3): 117145.CrossRefGoogle Scholar
Nishii, K. & Nagata, T. (2007). Developmental analyses of the phyllomorph formation in the rosulate species Streptocarpus rexii (Gesneriaceae). Pl. Syst. Evol. 265(3-4): 135145.CrossRefGoogle Scholar
Nishii, K., Kuwabara, A. & Nagata, T. (2004). Characterization of anisocotylous leaf formation in Streptocarpus wendlandii (Gesneriaceae): significance of plant growth regulators. Ann. Bot. 94(3): 457467.CrossRefGoogle ScholarPubMed
Nishii, K., Möller, M., Kidner, C. A., Spada, A., Mantegazza, R., Wang, C.-N. & Nagata, T. (2010). A complex case of simple leaves: indeterminate leaves co-express ARP and KNOX1 genes. Developm. Genes Evol. 220(1-2): 2540.CrossRefGoogle ScholarPubMed
Nishii, K., Huang, B.-H., Wang, C.-N. & Möller, M. (2017). From shoot to leaf: step-wise shifts in meristem and KNOX1 activity correlate with the evolution of a unifoliate body plan in Gesneriaceae. Developm. Genes Evol. 227(1): 4160.CrossRefGoogle ScholarPubMed
Oehlkers, F. (1923). Entwicklungsgeschichte von Monophyllaea horsfieldii. Beih. Bot. Centralbl., Abt. 1 39: 128151.Google Scholar
Petrova, G., Moyankova, D., Nishii, K., Forrest, L., Tsiripidis, I., Drouzas, A. D., Djilianov, D. & Möller, M. (2015). The European paleoendemic Haberlea rhodopensis (Gesneriaceae) has an Oligocene origin and a Pleistocene diversification and occurs in a long-persisting refugial area in southeastern Europe. Int. J. Pl. Sci. 176(6): 499514.CrossRefGoogle Scholar
Saueregger, J. & Weber, A. (2004). Factors controlling initiation and orientation of the macrocotyledon in anisocotylous Gesneriaceae. Edinburgh J. Bot. 60(3): 467482.CrossRefGoogle Scholar
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Meth. 9(7): 671675.CrossRefGoogle ScholarPubMed
Tsukaya, H. (1997). Determination of the unequal fate of cotyledons of a one-leaf plant, Monophyllaea. Development 124(7): 12751280.Google ScholarPubMed
Weber, A., Middleton, D. J., Forrest, A., Kiew, R., Lim, C. L., Rafidah, A. R., Sontag, S., Triboun, P., Wei, Y.-G., Yao, T. L. & Möller, M. (2011). Molecular systematics and remodelling of Chirita and associated genera (Gesneriaceae). Taxon 60(3): 767790.CrossRefGoogle Scholar