Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T22:15:28.173Z Has data issue: false hasContentIssue false

Evaluation of pollen dispersal and cross pollination using transgenic grapevine plants

Published online by Cambridge University Press:  22 October 2009

Margit Harst
Affiliation:
Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833 Siebeldingen, Germany
Beatrix-Axinja Cobanov
Affiliation:
Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833 Siebeldingen, Germany
Ludger Hausmann
Affiliation:
Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833 Siebeldingen, Germany
Rudolf Eibach
Affiliation:
Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833 Siebeldingen, Germany
Reinhard Töpfer
Affiliation:
Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833 Siebeldingen, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Public debate about the possible risk of genetically modified plants often concerns putative effects of pollen dispersal and out-crossing into conventional fields in the neighborhood of transgenic plants. Though Vitis vinifera (grapevine) is generally considered to be self-pollinating, it cannot be excluded that vertical gene transfer might occur. For monitoring pollen flow and out-crossing events, transgenic plants of Vitis vinifera cv. `Dornfelder' harboring the gus-int gene were planted in the center of a field experiment in Southwest Germany in 1999. The rate of pollen dispersal was determined by pollen traps placed at radial distances of 5–150 m from the pollen-donor plants, at 1.00 and 1.80 m above ground. Transgenic pollen was evaluated by GUS staining, and could clearly be distinguished from pollen originating from non-transgenic grapevine plants. Transgenic pollen was observed up to 150 m from the pollen donors. The rate of out-crossing was determined by sampling seeds of selected grapevines at a distance of 10 m to the pollen source, and of a sector at 20 m distance, respectively, followed by GUS analysis of seedlings. The average cross-pollination rate during the experiment (2002–2004) was 2.7% at a distance of 20 m. The results of this first pilot study present a good base for further assessment under the conditions of normal viticulture practice.

Type
Research Article
Copyright
© ISBR, EDP Sciences, 2009

References

Ahmedullah, M (1983) Morphology of pollen from selected Vitis cultivars. J. Amer. Soc. Hort. Sci. 108: 155160
Ahmedullah M (1986) Pollen morphology of Vitis cultivars using scanning electron microscopy and the significance of pollen classification in grape improvement programme. Conference Proceedings, Vignevini Bologna 13: 54–56
Aigrain P (2006) World Vitivinicultural Economical Data available as at 1st October 2006 – OIV – Organisation International de la Vigne et du Vin. http: news.reseau-concept.net/images/oiv_uk/Client/conjuncture_octobre_2006_EN.pdf
Akkurt, M, Welter, L, Maul E, Töpfer R, Zyprian E (2007) Development of SCAR markers linked to powdery mildew (Uncinula necator) resistance in grapevine (Vitis vinifera and Vitis sp.). Mol. Breeding 19: 103111 CrossRef
Alibert, B, Sellier, H, Souvre, A (2005) A combined method to study gene flow from cultivated sugar beet to ruderal beets in the glasshouse and open field. Eur. J. Agron. 23: 195208 CrossRef
Andreev, AA, Nikolaev, VI, Boisheiynov, DY, Petrov, V (1997) Pollen and isotope investigations of an ice core from Vavilov ice cap, October Revolution Island, Severnaya Zemlya arcipelago, Russia. Geogr. Phys. Quatern. 51: 379389
Barber KE (1981) Peat Stratigraphy and Climatic Change: A palaeoecological test of the theory of cyclic peat bog regeneration. Balkema (Publish.), Rotterdam
Ben Slimane, M, Askri, F (1989) Pollen size as a mean for identification of some Tunesian vine plants. Annales de l'Institut National de la Recherche Agronomique de Tunisie 62: 316
Besselat B (1994) Early forecast of grape production: accuracy and usefulness of a new method based on pollen analysis of the atmosphere. In: O.I.V. – 74EXPe Assemblée Générale, 3 : Économie Vitivinicole, Paris, France, 6–10 juin 1994
Besselat, B, Cour, P (1990) La prévision de la production viticole à l'aide de la technique de dosage pollinique de l'atmosphère. Bulletin de O.I.V. 63: 721740
Bornhoff, BA, Harst, M, Zyprian, E, Töpfer, R, Iannini C (2000) Transformation studies on Vitis vinifera L. via Agrobacterium tumefaciens. Acta Horticulturae 528: 359360 CrossRef
Bornhoff, BA, Harst, M, Zyprian, E, Töpfer, RC (2005) Transgenic plants of Vitis vinifera cv. Seyval blanc. Plant Cell Rep. 24: 433438 CrossRef
Bronner A, Wagner R (1997) Pollen et floraison chez Vitis vinifera L. – Techniques de contrôle du pouvoir germinatif du pollen. Progrès Agricole et Viticole, France 114: 130–139
Carraro, L, Lombardo, G, Cargnello, G, Gerla, FM (1981) Further observations on the factors related to the low productivity of Picolit giallo. Vitis 20: 193201
Conner, AJ, Mlynarova, L, Stiekema, WM, Nap, JP (1999) Gametophytic expression of GUS activity controlled by potato LHca3.ST1 promotor in tabacco pollen. J. Exp. Bot. 50: 14711479 CrossRef
Cunha M, Abreu I, Pinto P, Castro R (2003) Airborne pollen samples for early season estimates of wine production in a Mediterranean climate area of Northern Portugal. Am. J. Enol. Viticult. 54: 189–194
De Buck, S, Depicker, A (2001) Silencing of invertedly repeated transgenes in Arabidopsis thaliana. Meded Rijksuniv. Gent Fak. Landbouwkd Torgrp boil. Wet. 66: 393399
De Marchis, F, Belluci, M, Arcioni, S (2003) Measuring gene flow from two birdsfoot trefoli (Lotus corniculatus) field trial using transgenes as tracer markers. Mol. Ecol. 12: 16811685 CrossRef
Devaux, C, Lavigne, C, Falentin-Guyomarch, H, Vautrin, S, Lecomte, J, Klein, EK (2005) High diversity of oilseed rape pollen clouds over an agro-ecosystem indicates long-distance dispersal. Mol. Ecol. 14: 22692280 CrossRef
Di Collalto, G, Pisani, PL, Testi, I (1982) Recherche sul trasporto del polline e sulla impollinazione incrociata della vite. Riv. Viticolt. Enol. 35: 9199
Eastham K, Sweet J (2002) Genetically modified Organisms (GMOs): The Significance of Gene Flow Through Pollen Transfer. European Environment Agency (EEA), Environmental Issue Report No. 28, Copenhagen
Fornaciari M, Romano B (1995) Research to forecast the future yields in olive tree and vineyard in three different areas. Annali della Facoltà di Agraria, Università degli Studi di Perugina, Italy 49: 137–155
Funk, T, Wenzel, G, Schwarz, G (2006) Outcrossing frequencies and distribution of transgenic oilseed rape (Brassica napus L.) in the nearest neighbourhood. Eur. J. Agron. 24: 2634 CrossRef
Halfhill, MD, Millwood, RJ, Weissinger, AK, Warwick, SI, Stewart, CN (2003) Additive transgene expression and genetic introgression in multiple green-fluorescent protein transgenic crop × weed hybrid generations. Theor. Appl. Genet. 107: 15331540 CrossRef
Harst, M, Bornhoff, BA, Zyprian, E, Töpfer, R (2000) Influence of culture technique and genotype on the efficiency of Agrobacterium-mediated transformation of somatic embryos (Vitis vinifera) and their conversion to transgenic plants. Vitis 39: 99102
Heazlewood, JE, Wilson, S (2004) Anthesis, pollination and fruitset in Pinot Noir. Vitis 43: 6568
Hyde HA, Adams KF (1958) An Atlas of Airborne Pollen Grains. MacMillian & Co. Ltd. Publ., London
Jefferson, RA, Kavanagh, TA, Bevan, MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6: 39013907
Kevan, PG, Longair, RW, Gadawski, RM (1985) Dioecy and pollen dimorphism in Vitis riparia (Vitaceae). Can. J. Bot. 63: 22632267 CrossRef
(1935) Bemerkungen zum Einschluβ in Glycerin-Gelatine. Zeitschrift für Mikroskopie 51: 372374
Klein, EF, Lavigne, C, Picault, H, Renard, M, Gouyon, PH (2006) Pollen dispersal of oilseed rape: estimation of the dispersal function and effects of field dimension. J. Appl. Ecol. 43: 141151 CrossRef
Koblet, W, Vetsch, U (1968) Entwicklung der Rebblüte und Fruchtansatz. Schweizerische Zeitschrift für Obst- und Weinbau 104: 383388
Kozma, P, Scheuring, J (1968) Shape and structure of vinepollen in electronmicroscope. Publ. Acad. Hortic. Viticult. 5: 729
Kuparinen, A, Schurr, F, Tackenberg, O, O'Hara R (2007) Air-mediated pollen flow from genetically modified to conventional crops. Ecol. Appl. 17: 431440 CrossRef
Linder R, Linskens HF (1978) Le pollen de vigne d'Alsace. Genet. Amelior. Vigne. II e Symp. Intern. Bordeaux, 75–88
Lombardo, G, Carraro, L, Cargnello, G, Bassi, M (1976) Study on the ultrastructure of the pollen of Vitis vinifera L. cv. “Picolit” and on the germination after self- and cross-pollination. Riv. Viticolt. Enol. 29: 376382
Loos, C, Seppelt, R, Meier-Bethke, S, Schiemann, J, Richter, O (2003) Spatially explicit modelling of transgenic maize pollen dispersal and cross pollination. J. Ther. Biol. 225: 241255 CrossRef
Martens, MR, Reisch, BI, Mauro, MC (1989) Pollen size variability within genotypes of Vitis. HortScience 24: 659662
Messeguer, J, Marfà, V, Català, MM, Guideroni, E, Melé E (2004) A field study of pollen-mediated gene flow from Mediterranean GM rice to conventional rice and the red rice weed. Mol. Breeding 13: 103112 CrossRef
Müller-Thurgau (1884, 1888) Quoted in: Sartorius (1926)
Muskens, MW, Vissers, AP, Mol, JN, Kooter, JM (2000) Role of inverted DNA repeats in transcriptional and post-transcriptional gene silencing. Plant Mol. Biol. 43: 243260 CrossRef
Panigai, L, Moncomble D (1992) Prevision de récolte : Un nouveau capteur à pollen dans l'Aube. Le Vigneron Champenois 113: 2026
Rieger, MA, Lamond, M, Preston, C, Powles, SB, Roush, RT (2002) Pollen-mediated movement of herbicide resistance between commercial canola fields. Science 296: 23862388 CrossRef
Rognli, OA, Nillson, NO, Nurminiemi, M (2000) Effects of distances and pollen competition on gene flow in the wind pollinated grass Festuca pratensis Huds. Heredity 85: 550560 CrossRef
Sartorius O (1926) Zur Entwicklung und Physiologie der Rebbluete. Angewandte Botanik 8: 29–62, 66–89
Staudt, G (1999) Opening of flowers and time of anthesis in grapevine plants, Vitis vinifera L. Vitis 38: 1520
Tackenberg, O (2003) Modeling long-distance dispersal of plant diaspores by wind. Ecol. Monogr. 73: 173189 CrossRef
Turner, SD, Brown, AG (2004) Vitis pollen dispersal in and from organic vineyards I. Pollen trap and soil pollen data. Review of Paleobotany and Palynology 129: 117132 CrossRef
Vancanneyt, G, Schmidt, R, O'Connor-Sanchez, A, Willmitzer, I, Rocha-Sosa M (1990) Construction of an intron-containing-marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol. Gen. Genet. 220: 245250 CrossRef