Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T04:49:26.777Z Has data issue: false hasContentIssue false

Enhancing biodiversity conservation in existing land-use plans with widely available datasets and spatial analysis techniques

Published online by Cambridge University Press:  19 September 2017

SEBASTIAN MARTINUZZI*
Affiliation:
SILVIS Lab, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA
LUIS RIVERA
Affiliation:
Instituto de Ecorregiones Andinas (INECOA) –Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Universidad Nacional de Jujuy, Alberdi 47, 4600, Jujuy, Argentina
NATALIA POLITI
Affiliation:
Instituto de Ecorregiones Andinas (INECOA) –Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Universidad Nacional de Jujuy, Alberdi 47, 4600, Jujuy, Argentina
BROOKE L. BATEMAN
Affiliation:
SILVIS Lab, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA Science Division, National Audubon Society, 225 Varick St, New York, NY 10014, USA
ESTEFANIA RUIZ DE LOS LLANOS
Affiliation:
Instituto de Ecorregiones Andinas (INECOA) –Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Universidad Nacional de Jujuy, Alberdi 47, 4600, Jujuy, Argentina
LEONIDAS LIZARRAGA
Affiliation:
Delegación Regional Noroeste, Sistema de Información de Biodiversidad, Administración de Parques Nacionales, Santa Fe 23, 4400, Salta, Argentina
M. SOLEDAD DE BUSTOS
Affiliation:
Secretaría de Ambiente de la Provincia de Salta, Zuviría 744, 4400, Salta, Argentina
SILVIA CHALUKIAN
Affiliation:
Proyecto de Investigación y Conservación del Tapir en el Noroeste Argentino, 4400, Salta, Argentina
ANNA M. PIDGEON
Affiliation:
SILVIS Lab, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA
VOLKER C. RADELOFF
Affiliation:
SILVIS Lab, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA
*
*Correspondence: Dr Sebastian Martinuzzi email: martinuzzi@wisc.edu

Summary

In many developing countries, high rates of deforestation and biodiversity loss make conservation efforts urgent. Improving existing land-use plans can be an option for enhancing biodiversity conservation. We showcase an approach to enhancing an existing forest land-use plan using widely available data and spatial tools, focusing on Argentina's Southern Yungas ecoregion. We mapped the distribution of wilderness areas and species and habitats of conservation concern, assessed their representation in the land-use plan and quantified potential changes in habitat availability and forest connectivity. Wilderness comprised 48% of the study area, and the highest concentrations of elements of conservation concern were in the north. In the current land-use plan, wilderness areas often occur in regions where logging and grazing are allowed, and a large proportion of the forest with the highest conservation value (43%) is under some level of human influence. Furthermore, we found that deforestation being legally allowed in the land-use plan could reduce forest connectivity and habitat availability substantially. We recommend updating the current land-use plan by considering human influence and elements of conservation concern. More broadly, we demonstrate that widely available spatial datasets and straightforward approaches can improve the usefulness of existing land-use plans so that they more fully incorporate conservation goals.

Type
Non-Thematic Papers
Copyright
Copyright © Foundation for Environmental Conservation 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Supplementary material can be found online at https://doi.org/10.1017/S0376892917000455

References

Bateman, B.L., VanDerWal, J. & Johnson, C.N. (2012) Nice weather for bettongs: using weather events, not climate means, in species distribution models. Ecography 35: 306314.Google Scholar
Beier, P. & Noss, R.F. (1998) Do habitat corridors provide connectivity? Conservation Biology 12: 12411252.Google Scholar
Brown, A.D. & Malizia, L.R. (2004) Las Selvas Pedemontanas de las Yungas. Ciencia Hoy 14: 5263.Google Scholar
Cabrera, A. (1976) Regiones Fitogeográficas Argentinas. Buenos Aires: Enciclopedia Argentina de Agricultura y Jardinería.Google Scholar
Di Bitetti, M.S., Albanesi, S.A., Foguet, M.J., De Angelo, C. & Brown, A.D. (2013) The effect of anthropic pressures and elevation on the large and medium-sized terrestrial mammals of the subtropical mountain forests (Yungas) of NW Argentina. Mammalian Biology 78: 2127.Google Scholar
Di Marco, M., Rondinini, C., Boitani, L. & Murray, K.A. (2013) Comparing multiple species distribution proxies and different quantifications of the human footprint map, implications for conservation. Biological Conservation 165: 203211.Google Scholar
Fajardo, J., Lessmann, J., Bonaccorso, E., Devenish, C. & Muñoz, J. (2014) Combined use of systematic conservation planning, species distribution modelling, and connectivity analysis reveals severe conservation gaps in a megadiverse country (Peru). PLoS ONE 9: e114367.Google Scholar
Fernández, M., Navarro, L.M., Apaza-Quevedo, A., Gallegos, S.C., Marques, A., Zambrana-Torrelio, C. et al. (2015) Challenges and opportunities for the Bolivian Biodiversity Observation Network. Biodiversity 16: 8698.Google Scholar
Fitzherbert, E.B., Struebig, M.J., Morel, A., Danielsen, F., Brü, C.A., Donald, P.F. & Phalan, B. (2008) How will oil palm expansion affect biodiversity? Trends in Ecology & Evolution 23: 538545.Google Scholar
Fundación CEBio (2015) Base de Datos de Especies de las Yungas Australes de Argentina. San Salvador de Jujuy, Argentina: Fundación CEBio.Google Scholar
GBIF (2015) Global Biodiversity Information Facility [www document]. URL http://www.gbif.org/Google Scholar
Gobierno de Jujuy (2008) Plan de Ordenamiento Territorial Adaptativo para las Areas Boscosas de la Provincia de Jujuy. Jujuy, Argentina: Ministerio de Produccion y Medio Ambiente, Gobierno de Jujuy.Google Scholar
Gobierno de Salta (2009) Plan de Ordenamiento Territorial de las Areas Boscosas de la Provincia de Salta. Salta, Argentina: Ministerio de Ambiente y Desarrollo Sustentable, Gobierno de Salta.Google Scholar
González-Abraham, C., Ezcurra, E., Garcillán, P.P., Ortega-Rubio, A., Kolb, M. & Creel, J.E.B. (2015) The human footprint in Mexico: physical geography and historical legacies. PLoS ONE 10: e0121203.Google Scholar
Grau, H.R., Gasparri, N.I. & Aide, T.M. (2005) Agriculture expansion and deforestation in seasonally dry forests of north-west Argentina. Environmental Conservation 32: 140148.Google Scholar
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 19651978.Google Scholar
IGN (2014) SIG del IGN (Instituto Geográfico Nacional). Instituto Geográfico Nacional. Buenos Aires, Argentina [www document]. URL http://www.ign.gob.ar/sigGoogle Scholar
IUCN (2015) IUCN Red List of Threatened Species [www document]. URL http://www.iucnredlist.org/Google Scholar
Laurance, W.F., Sayer, J. & Cassman, K.G. (2014) Agricultural expansion and its impacts on tropical nature. Trends in Ecology and Evolution 29: 107116.Google Scholar
Lawler, J.J., Wiersma, Y.F. & Huettmann, F. (2011) Using species distribution models for conservation planning and ecological forecasting. In: Predictive Species and Habitat Modeling in Landscape Ecology, eds. Drew, A.C., Wiersma, F.Y. & Huettmann, F., pp. 271290. New York, NY: Springer New York.Google Scholar
Marinaro, S., Grau, H.R., Macchi, L. & Zelaya, P.V. (2015) Land tenure and biological communities in dry Chaco forests of northern Argentina. Journal of Arid Environments 123: 6067.Google Scholar
Mastrangelo, M.E. & Gavin, M.C. (2012) Trade-offs between cattle production and bird conservation in an agricultural frontier of the Gran Chaco of Argentina. Conservation Biology 26: 10401051.Google Scholar
McFarland, K.P., Rimmer, C.C., Goetz, J.E., Aubry, Y., Wunderle, J.M., Sutton, A. et al. (2013) A winter distribution model for Bicknell's thrush (Catharus bicknelli), a conservation tool for a threatened migratory songbird. PLoS ONE 8: e53986.Google Scholar
Meyer, C., Kreft, H., Guralnick, R. & Jetz, W. (2015) Global priorities for an effective information basis of biodiversity distributions. Nature Communications 6: 8221.Google Scholar
Michalski, F., Peres, C.A. & Lake, I.R. (2008) Deforestation dynamics in a fragmented region of southern Amazonia: evaluation and future scenarios. Environmental Conservation 35: 93103.Google Scholar
Mittermeier, R.A., Myers, N., Thomsen, J.B., da Fonseca, G.A.B. & Olivieri, S. (1998) Biodiversity hotspots and major tropical wilderness areas: approaches to setting conservation priorities. Conservation Biology 12: 516520.Google Scholar
Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B. & Kent, J. (2000) Biodiversity hotspots for conservation priorities. Nature 403: 853858.Google Scholar
Ormerod, S. & Tyler, S. (2015) Rufous-throated dipper (Cinclus schulzi). In: Handbook of the Birds of the World Alive, eds. del Hoyo, J., Elliott, A., Sargatal, J., Christie, D.A. & de Juana, E.. Barcelona, Spain: Lynx Edicions.Google Scholar
Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231259.Google Scholar
Pidgeon, A.M., Rivera, L., Martinuzzi, S., Politi, N. & Bateman, B. (2015) Will representation targets based on area protect critical resources for the conservation of the Tucuman parrot? The Condor 117: 503517.Google Scholar
Politi, N., Hunter, M. & Rivera, L. (2010) Availability of cavities for avian cavity nesters in selectively logged subtropical montane forests of the Andes. Forest Ecology and Management 260: 893906.Google Scholar
Politi, N., Rivera, L., Lizarraga, L., Hunter, M. Jr. & Defosse, G.E. (2015). The dichotomy between protection and logging of the endangered and valuable timber species Amburana cearensis in north-west Argentina. Oryx 49: 111117.Google Scholar
Pressey, R.L., Cabeza, M., Watts, M.E., Cowling, R.M. & Wilson, K.A. (2007) Conservation planning in a changing world. Trends in Ecology and Evolution 22: 583592.Google Scholar
Rivera, L., Politi, N. & Bucher, E.H. (2007) Decline of the Tucumán parrot Amazona tucumana in Argentina: present status and conservation needs. Oryx 41: 101105.Google Scholar
Rodrigues, A.S.L. (2011) Improving coarse species distribution data for conservation planning in biodiversity-rich, data-poor, regions: no easy shortcuts. Animal Conservation 14: 108110.Google Scholar
Rondinini, C., Wilson, K.A., Boitani, L., Grantham, H. & Possingham, H.P. (2006) Tradeoffs of different types of species occurrence data for use in systematic conservation planning. Ecology Letters 9: 11361145.Google Scholar
Sanderson, E.W., Jaiteh, M., Levy, M.A., Redford, K.H., Wannebo, A.V. & Woolmer, G. (2002) The human footprint and the last of the wild. Bioscience 52: 891904.Google Scholar
Seghezzo, L., Volante, J., Paruelo, J., Somma, D., Buliubasich, E., Rodríguez, H. et al. (2011) Native forests and agriculture in Salta (Argentina). The Journal of Environment and Development 20: 251277.Google Scholar
Taber, A., Chalukian, S.C., Altrichter, M., Minkowsli, K., Lizarraga, L., Sanderson, E. et al. (2008) El Destino de los Arquitectos de los Bosques Neotropicales: Evaluación de la Distribución y Estado de Conservación de los pecaríes labiados y los Tapires de Tierras Bajas. New York, NY, USA: Wildlife Conservation Society, SSE/IUCN, Tapir Specialist Group, Wildlife Trust.Google Scholar
Theobald, D.M. (2013) A general model to quantify ecological integrity for landscape assessments and US application. Landscape Ecology 28: 18591874.Google Scholar
VanDerWal, J., Shoo, L.P., Graham, C. & Williams, S.E. (2009) Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know? Ecological Modelling 220: 589594.Google Scholar
Vergara, P.M., Pérez-Hernández, C.G., Hahn, I.J. & Soto, G.E. (2013) Deforestation in central Chile causes a rapid decline in landscape connectivity for a forest specialist bird species. Ecological Research 28: 481492.Google Scholar
Vogt, P. (2016) GuidosToolbox (Graphical User Interface for the Description of image Objects and their Shapes [www document]. URL http://forest.jrc.ec.europa.eu/download/software/guidosGoogle Scholar
Wich, S.A., Gaveau, D., Abram, N., Ancrenaz, M., Baccini, A., Brend, S. et al. (2012) Understanding the impacts of land-use policies on a threatened species: is there a future for the Bornean orangutan? PLoS ONE 7: e49142.Google Scholar
Wickham, J.D., Riitters, K.H., Wade, T.G. & Vogt, P. (2010) A national assessment of green infrastructure and change for the conterminous United States using morphological image processing. Landscape and Urban Planning 94: 186195.Google Scholar
Wisz, M.S., Hijmans, R.J., Li, J., Peterson, A.T., Graham, C.H., Guisan, A., et al. (2008) Effects of sample size on the performance of species distribution models. Diversity and Distributions 14: 763773.Google Scholar
Woolmer, G., Trombulak, S.C., Ray, J.C., Doran, P.J., Anderson, M.G., Baldwin, R.F., et al. (2008) Rescaling the human footprint: a tool for conservation planning at an ecoregional scale. Landscape and Urban Planning 87: 4253.Google Scholar
Zamorano-Elgueta, C., Cayuela, L., González-Espinosa, M., Lara, A. & Parra-Vázquez, M.R. (2012) Impacts of cattle on the South American temperate forests: challenges for the conservation of the endangered monkey puzzle tree (Araucaria araucana) in Chile. Biological Conservation 152: 110118.Google Scholar
Supplementary material: PDF

Martinuzzi et al. supplementary material

Appendix S1

Download Martinuzzi et al. supplementary material(PDF)
PDF 85 KB
Supplementary material: PDF

Martinuzzi et al. supplementary material

Appendix S2

Download Martinuzzi et al. supplementary material(PDF)
PDF 327.4 KB
Supplementary material: PDF

Martinuzzi et al. supplementary material

Figure S1

Download Martinuzzi et al. supplementary material(PDF)
PDF 263 KB
Supplementary material: PDF

Martinuzzi et al. supplementary material

Figure S2

Download Martinuzzi et al. supplementary material(PDF)
PDF 216.8 KB
Supplementary material: PDF

Martinuzzi et al. supplementary material

Figure S3

Download Martinuzzi et al. supplementary material(PDF)
PDF 222 KB
Supplementary material: PDF

Martinuzzi et al. supplementary material

Table S1

Download Martinuzzi et al. supplementary material(PDF)
PDF 82.3 KB