Hostname: page-component-6bf8c574d5-2jptb Total loading time: 0 Render date: 2025-02-26T06:04:06.324Z Has data issue: false hasContentIssue false

Is Brazil’s biodiversity offset policy effective in conserving the Cerrado?

Published online by Cambridge University Press:  24 February 2025

Gustavo Bediaga de Oliveira*
Affiliation:
Instituto Brasileiro de Meio Ambiente e dos Recursos Naturais Renováveis – IBAMA, Brasília, DF, Brazil Universidade de Brasília, Programa de Pós-graduação em Ecologia, Brasília, DF, Brazil
Ricardo Bomfim Machado
Affiliation:
Universidade de Brasília, Departamento de Zoologia, Brasília, DF, Brazil
Marinez Ferreira Siqueira
Affiliation:
Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, RJ, Brazil Departamento de Biologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
Renata Dias Françoso
Affiliation:
Universidade de Brasília, Programa de Pós-graduação em Ecologia, Brasília, DF, Brazil Departamento de Ciências Florestais, Universidade Federal de Lavras, Lavras, MG, Brazil
Pablo Viany Prieto
Affiliation:
Centro Nacional de Conservação da Flora (IUCN SSC Brazil Plant Red List Authority), Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
John Du Vall Hay
Affiliation:
Universidade de Brasília, Departamento de Ecologia, Brasília, DF, Brazil
*
Corresponding author: Gustavo Bediaga de Oliveira; Email: gbediaga@gmail.com

Summary

Brazilian landowners are obligated to conserve a minimum percentage of native vegetation within their properties (termed a ‘legal reserve’), but non-compliance can be compensated elsewhere through a biodiversity offset. Recent changes in rules for legal reserve compensation (LRC) have increased the allowed spatial scale and softened the ecological criteria required to select properties for compensation, potentially leading to considerable biodiversity losses. In this paper, we analyse whether these rules promote the conservation of tree species on private lands through LRC in the Cerrado biome, the most biodiverse savannah in the world. We modelled the potential distribution of 126 Cerrado tree species and simulated several potential biodiversity offsets to calculate expected species losses under former and current LRC rules. Our results show that biodiversity offsets established under current and former LRC rules can lead to up to 100% tree species losses. In contrast, setting a minimum similarity threshold between watersheds can reduce median tree species loss in biodiversity offsets to as low as 3% and prevents LRC with no common species between sites. Therefore, the current rule is expected to strongly impact biodiversity in the Cerrado. Similarity in species composition between watersheds must be considered in order to implement LRC offsets that effectively conserve Cerrado biodiversity on private lands.

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Foundation for Environmental Conservation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abers, RN, Jorge, KD (2005) Descentralização da gestão da água – REBECCA ABERS. Ambiente & Sociedade VIII: 127.Google Scholar
Allouche, O, Tsoar, A, Kadmon, R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43: 12231232.CrossRefGoogle Scholar
ANA (2012) Bacias Hidrográficas Ottocodificadas (Níveis Otto 1–7) [www document]. URL https://metadados.snirh.gov.br/geonetwork/srv/api/records/b228d007-6d68-46e5-b30d-a1e191b2b21f Google Scholar
Araújo, MB, Guisan, A (2006) Five (or so) challenges for species distribution modelling. Journal of Biogeography 33: 16771688.Google Scholar
Bivand, R, Rundel, C, Pebesma, E, Hufthammer, KO (2016) Interface to Geometry Engine - Open Source (GEOS): Package ‘rgeos’. R Documentation [www document]. URL http://rgeos.r-forge.r-project.org/ Google Scholar
Bivand, R, Tim, K, Rowlingson, B (2021) Package ‘rgdal’ Title Bindings for the ‘Geospatial’ Data Abstraction Library [www document]. URL https://rgdal.r-forge.r-project.org/ Google Scholar
Boria, RA, Olson, LE, Goodman, SM, Anderson, RP (2014) Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecological Modelling 275: 7377.CrossRefGoogle Scholar
Bridgewater, S, Ratter, JA, Ribeiro, JF (2004) Biogeographic patterns, β-diversity and dominance in the Cerrado biome of Brazil. Biodiversity and Conservation 13: 22952318.CrossRefGoogle Scholar
Bull, JW, Suttle, KB, Gordon, A, Singh, NJ, Milner-Gulland, EJ (2013) Biodiversity offsets in theory and practice. Oryx 47: 369380.CrossRefGoogle Scholar
Cao, Y, DeWalt, RE, Robinson, JL, Tweddale, T, Hinz, L, Pessino, M (2013) Using Maxent to model the historic distributions of stonefly species in Illinois streams: the effects of regularization and threshold selections. Ecological Modelling 259: 3039.CrossRefGoogle Scholar
CAR (2024) Cadastro Ambiental Rural [www document]. URL https://www.car.gov.br/ Google Scholar
Carmignotto, AP, Pardini, R, de Vivo, M (2022) Habitat heterogeneity and geographic location as major drivers of Cerrado small mammal diversity across multiple spatial scales. Frontiers in Ecology and Evolution 9: 739919.CrossRefGoogle Scholar
de Freitas, FLM, Sparovek, G, Mörtberg, U, Silveira, S, Klug, I, Berndes, G (2017) Offsetting legal deficits of native vegetation among Brazilian landholders: effects on nature protection and socioeconomic development. Land Use Policy 68: 189199.CrossRefGoogle Scholar
de Mello, K, Fendrich, AN, Borges-Matos, C, Brites, AD, Tavares, PA, da Rocha, GC et al. (2021a) Integrating ecological equivalence for native vegetation compensation: a methodological approach. Land Use Policy 108: 105568.CrossRefGoogle Scholar
de Mello, K, Fendrich, AN, Sparovek, G, Simmonds, JS, Maron, M, Tavares, PA et al. (2021b) Achieving private conservation targets in Brazil through restoration and compensation schemes without impairing productive lands. Environmental Science and Policy 120: 110.CrossRefGoogle Scholar
Develey, PF, Pongiluppi, T (2010) Impactos potenciais na avifauna decorrentes das alterações propostas para o Código Florestal Brasileiro. Biota Neotropica 10: 4345.CrossRefGoogle Scholar
Díaz, S, Settele, J, Brondízio, ES, Ngo, HT, Agard, J, Arneth, A et al. (2019) Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366: eaax3100.CrossRefGoogle Scholar
Eiten, G (1994) Vegetação do cerrado. Cerrado: caracterização, ocupação e perspectivas 2: 1773.Google Scholar
Flora do Brasil 2020 (2021) Flora do Brasil 2020 [www document]. URL http://floradobrasil.jbrj.gov.br/ Google Scholar
Françoso, RD (2014) Padrões biogeográficos e composição das comunidades arbóreas do Cerrado brasileiro. Tese de doutorado. Universidade de Brasília.Google Scholar
Freitas, AVL (2010) Impactos potenciais das mudanças propostas no Código Florestal Brasileiro sobre as borboletas. Biota Neotropica 10: 5357.CrossRefGoogle Scholar
Gonçalves, TV, Gomes, MAdA, Nabout, JC (2020) The historical geography, bioclimatic, and informetric conditions of protected areas in the Brazilian Cerrado. Journal for Nature Conservation 58: 125905.CrossRefGoogle Scholar
Gordon, A, Bull, JW, Wilcox, C, Maron, M (2015) Perverse incentives risk undermining biodiversity offset policies. Journal of Applied Ecology 52: 532537.CrossRefGoogle Scholar
Hijmans, RJ, van Etten, J (2014) raster: Geographic data analysis and modeling. R package [www document]. URL https://cran.r-project.org/web/packages/raster/raster.pdf Google Scholar
IBGE (2019) Biomas e sistema costeiro-marinho do Brasil : compatível com a escala 1:250 000. Rio de Janeiro, Brazil: IBGE.Google Scholar
INPE (2024) TerraBrasilis [www document]. URL https://terrabrasilis.dpi.inpe.br/ Google Scholar
Jarvis, A, Reuter, HI, Nelson, AD, Guevara, E (2008) Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90m Database. CGIAR Consortium for Spatial Information [www document]. URL https://research.utwente.nl/en/publications/hole-filled-srtm-for-the-globe-version-4-data-grid Google Scholar
Kaky, E, Nolan, V, Alatawi, A, Gilbert, F (2020) A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: a case study with Egyptian medicinal plants. Ecological Informatics 60: 101150.CrossRefGoogle Scholar
Kramer-Schadt, S, Niedballa, J, Pilgrim, JD, Schröder, B, Lindenborn, J, Reinfelder, V et al. (2013) The importance of correcting for sampling bias in MaxEnt species distribution models. Diversity and Distributions 19: 13661379.CrossRefGoogle Scholar
Kriticos, DJ, Webber, BL, Leriche, A, Ota, N, Macadam, I, Bathols, J et al. (2012) CliMond: global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods in Ecology and Evolution 3: 5364.CrossRefGoogle Scholar
Legendre, P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74: 16591673.CrossRefGoogle Scholar
Legendre, P, Legendre, L (2012) Numerical Ecology, 3rd edition. Amsterdam, The Netherlands: Elsevier.Google Scholar
Lewin-Koh, NJ, Bivand, R, Pebesma, EJ, Archer, E, Baddeley, A, Bibiko, HJ et al. (2011) maptools: tools for reading and handling spatial objects. R package version 0.8-10 [www document]. URL http://CRAN.R-project.org/package=maptools Google Scholar
Liu, C, Berry, PM, Dawson, TP, Pearson, RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28: 385393.CrossRefGoogle Scholar
Liu, C, White, M, Newell, G (2013) Selecting thresholds for the prediction of species occurrence with presence-only data. Journal of Biogeography 40: 778789.CrossRefGoogle Scholar
Mansourian, S, Vallauri, D (2014) Restoring forest landscapes: important lessons learnt. Environmental Management 53: 241251.CrossRefGoogle ScholarPubMed
Maron, M, Hobbs, RJ, Moilanen, A, Matthews, JW, Christie, K, Gardner, TA et al. (2012) Faustian bargains? Restoration realities in the context of biodiversity offset policies. Biological Conservation 155: 141148.CrossRefGoogle Scholar
Maron, M, Ives, CD, Kujala, H, Bull, JW, Maseyk, FJF, Bekessy, S et al. (2016) Taming a wicked problem: resolving controversies in biodiversity offsetting. BioScience 66: 489498.CrossRefGoogle Scholar
Marques, OAV, Nogueira, C, Martins, M, Sawaya, RJ (2010) Impactos potenciais das mudanças propostas no Código Florestal Brasileiro sobre os répteis brasileiros. Biota Neotropica 10: 3941.CrossRefGoogle Scholar
Metzger, JP, Bustamante, MMC, Ferreira, J, Fernandes, GW, Librán-Embid, F, Pillar, VD et al. (2019) Why Brazil needs its legal reserves. Perspectives in Ecology and Conservation 17: 91103.CrossRefGoogle Scholar
Mews, HA, Pinto, JRR, Eisenlohr, PV, Lenza, E (2014) Does size matter? Conservation implications of differing woody population sizes with equivalent occurrence and diversity of species for threatened savanna habitats. Biodiversity and Conservation 23: 11191131.CrossRefGoogle Scholar
Moilanen, A, Kotiaho, JS (2018) Fifteen operationally important decisions in the planning of biodiversity offsets. Biological Conservation 227: 112120.CrossRefGoogle Scholar
Moilanen, A, Kujala, H, Mikkonen, N (2020) A practical method for evaluating spatial biodiversity offset scenarios based on spatial conservation prioritization outputs. Methods in Ecology and Evolution 11: 794803.CrossRefGoogle Scholar
Morlon, H, Chuyong, G, Condit, R, Hubbell, S, Kenfack, D, Thomas, D et al. (2008) A general framework for the distance-decay of similarity in ecological communities. Ecology Letters 11: 904917.CrossRefGoogle ScholarPubMed
Myers, N, Mittermeier, RA, Mittermeier, CG, Da Fonseca, GAB, Kent, J (2000) Biodiversity hotspots for conservation priorities. Nature 403: 858858.CrossRefGoogle ScholarPubMed
Nepstad, D, McGrath, D, Stickler, C, Alencar, A, Azevedo, A, Swette, B et al. (2014) Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science 344: 11181123.CrossRefGoogle ScholarPubMed
Nogueira, C, Colli, GR, Martins, M (2009) Local richness and distribution of the lizard fauna in natural habitat mosaics of the Brazilian Cerrado. Austral Ecology 34: 8396.CrossRefGoogle Scholar
Oksanen, J, Legendre, P, O’Hara, B, Stevens, MHH, Oksanen, MJ, Suggests, M (2007) The vegan package. Community Ecology Package 10: 631637.Google Scholar
Pearson, RG, Raxworthy, CJ, Nakamura, M, Townsend Peterson, A (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography 34: 102117.CrossRefGoogle Scholar
Phillips, SJ, Anderson, RP, Schapire, RE (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231259.CrossRefGoogle Scholar
R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing [www document]. URL https://www.R-project.org Google Scholar
Ribeiro, JF, Walter, BMT (2008) As principais fitofisionomias do Bioma Cerrado. In EI, Tecnológica (ed.), Cerrado: ecologia e flora (pp. 153212). Brasília, Brazil: EMBRAPA.Google Scholar
Ribeiro, R, Ricklefs, RE, Marinho-Filho, J (2020) Partitioning beta diversity to unravel mechanisms underlying the distributions of nonvolant small mammals in Brazil’s Cerrado. Journal of Mammalogy 101: 14381450.CrossRefGoogle Scholar
Santana, FS, de Siqueira, MF, Saraiva, AM, Correa, PLP (2008) A reference business process for ecological niche modelling. Ecological Informatics 3: 7586.CrossRefGoogle Scholar
Sparovek, G, Berndes, G, Barretto, AGdOP, Klug, ILF (2012) The revision of the Brazilian Forest Act: increased deforestation or a historic step towards balancing agricultural development and nature conservation? Environmental Science & Policy 16: 6572.CrossRefGoogle Scholar
Sparovek, G, Reydon, BP, Guedes Pinto, LF, Faria, V, de Freitas, FLM, Azevedo-Ramos, C et al. (2019) Who owns Brazilian lands? Land Use Policy 87: 104062.CrossRefGoogle Scholar
Strassburg, BBN, Beyer, HL, Crouzeilles, R, Iribarrem, A, Barros, F, de Siqueira, MF et al. (2019) Strategic approaches to restoring ecosystems can triple conservation gains and halve costs. Nature Ecology and Evolution 3: 6270.CrossRefGoogle ScholarPubMed
ten Kate, K, Bishop, J, Bayon, R, ten Tate, K, Bishop, J, Bayon, R (2004) Biodiversity Offsets: Views, Experience, and the Business Case [www document]. URL https://iucn.org/content/biodiversity-offsets-views-experience-and-business-case Google Scholar
Toledo, LF, de Carvalho-e-Silva, SP, Sánchez, C, de Almeida, MA, Haddad, CFB (2010) A revisão do Código Florestal Brasileiro: impactos negativos para a conservação dos anfíbios. Biota Neotropica 10: 3538.CrossRefGoogle Scholar
Valdujo, PH, Carnaval, ACOQ, Graham, CH (2013) Environmental correlates of anuran beta diversity in the Brazilian Cerrado. Ecography 36: 708717.CrossRefGoogle Scholar
van Vuuren, D, Pereira, HM, Lodge, D, Alder, J, Dobson, A, Wolters, V et al. (2005) Biodiversity across Scenarios [www document]. URL https://www.millenniumassessment.org/documents/document.334.aspx.pdf Google Scholar
Whittaker, RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs 30: 279338.CrossRefGoogle Scholar
Wisz, MS, Hijmans, RJ, Li, J, Peterson, AT, Graham, CH, Guisan, A et al. (2008) Effects of sample size on the performance of species distribution models. Diversity and Distributions 14: 763773.CrossRefGoogle Scholar
Zomer, RJ, Bossio, DA, Trabucco, A, Yuanjie, L, Gupta, DC, Singh, VP (2007) Trees and Water: Smallholder Agroforestry on Irrigated Lands in Northern India. Colombo, Sri Lanka: International Water Management Institute.Google Scholar
Zomer, RJ, Trabucco, A, Bossio, DA, Verchot, LV (2008) Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agriculture, Ecosystems and Environment 126: 6780.CrossRefGoogle Scholar
zu Ermgassen, SOSE, Baker, J, Griffiths, RA, Strange, N, Struebig, MJ, Bull, JW (2019) The ecological outcomes of biodiversity offsets under ‘no net loss’ policies: a global review. Conservation Letters 12: 117.CrossRefGoogle Scholar
Supplementary material: File

Oliveira et al. supplementary material

Oliveira et al. supplementary material
Download Oliveira et al. supplementary material(File)
File 252.6 KB