Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T09:09:15.710Z Has data issue: false hasContentIssue false

Vulnerability to climate change and sea-level rise of the 35th biodiversity hotspot, the Forests of East Australia

Published online by Cambridge University Press:  01 July 2015

C. BELLARD*
Affiliation:
Ecologie, Systématique et Evolution, UMR CNRS 8079, Universite Paris-Sud, F-91405 Orsay Cedex, France Current address: Genetics, Evolution and Environment, Division Biosciences, Centre for Biodiversity, Environment and Research, University College London, London, UK
C. LECLERC
Affiliation:
Ecologie, Systématique et Evolution, UMR CNRS 8079, Universite Paris-Sud, F-91405 Orsay Cedex, France
B. D. HOFFMANN
Affiliation:
CSIRO, Land and Water Flagship, Tropical Ecosystems Research Centre, PMB 44, Winnellie, Northern Territory 0822, Australia
F. COURCHAMP
Affiliation:
Ecologie, Systématique et Evolution, UMR CNRS 8079, Universite Paris-Sud, F-91405 Orsay Cedex, France Current address: Department of Ecology and Evolutionary Biology and Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, USA
*
*Correspondence: Dr Celine Bellard e-mail: celine.bellard@u-psud.fr

Summary

There is an urgent need to understand how climate change, including sea-level rise, is likely to threaten biodiversity and cause secondary effects, such as agro-ecosystem alteration and human displacement. The consequences of climate change, and the resulting sea-level rise within the Forests of East Australia biodiversity hotspot, were modelled and assessed for the 2070–2099 period. Climate change effects were predicted to affect c. 100000 km2, and a rise in sea level an area of 860 km2; this could potentially lead to the displacement of 20600 inhabitants. The two threats were projected to mainly affect natural and agricultural areas. The greatest conservation benefits would be obtained by either maintaining or increasing the conservation status of areas in the northern (Wet Tropics) or southern (Sydney Basin) extremities of the hotspot, as they constitute about half of the area predicted to be affected by climate change, and both areas harbour high species richness. Increasing the connectivity of protected areas for Wet Tropics and Sydney Basin species to enable them to move into new habitat areas is also important. This study provides a basis for future research on the effects on local biodiversity and agriculture.

Type
Papers
Copyright
Copyright © Foundation for Environmental Conservation 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ainsworth, E.A. & Long, S.P. (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2 . The New Phytologist 165: 351–71.CrossRefGoogle Scholar
ALUM (2010) Australian land use and management classification version 7 [www document]. URL http://www.agriculture.gov.au/abares/aclump/land-use/alum-classification-version-7-may-2010 Google Scholar
Atlas of Living Australia (2013) Regions [www document]. URL http://regions.ala.org.au/ Google Scholar
Barnosky, A.D., Matzke, N., Tomiya, S., Wogan, G.O.U., Swartz, B., Quental, T.B., Marshall, C., McGuire, J.L., Lindsey, E.L., Maguire, K.C., Mersey, B. & Ferrer, E.A. (2011) Has the Earth's sixth mass extinction already arrived? Nature 471: 5157.Google Scholar
Beaumont, L.J., Pitman, A., Perkins, S., Zimmermann, N.E. & Yoccoz, N.G. (2010) Impacts of climate change on the world's most exceptional ecoregions. Proceedings of the National Academy of Science USA 108: 23062311.Google Scholar
Beer, A., Tually, S., Kroehn, M., Martin, J., Gerritsen, R., Taylor, M., Graymore, M. & Law, J. (2013) Australia's country towns 2050: what will a climate adapted settlement pattern look like? Report. National Climate Change Adaptation Research Facility, Gold Coast, Australia: 139 pp. [www document]. URL http://www.nccarf.edu.au/publications/country-towns-2050-climate-adapted-settlement Google Scholar
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. (2012) Impacts of climate change on the future of biodiversity. Ecology Letters 15: 365377.Google Scholar
Bellard, C., Leclerc, C. & Courchamp, F. (2013 a) Impact of sea level rise on the 10 insular biodiversity hotspots. Global Ecology and Biogeography 23: 203212.Google Scholar
Bellard, C., Thuiller, W., Leroy, B., Genovesi, P., Bakkenes, M. & Courchamp, F. (2013 b) Will climate change promote future invasions? Global Change Biology 19: 37403748.CrossRefGoogle ScholarPubMed
CIESIN (2013) Natural resource protection and child health indicators, 2013 release. 2006–2013. Center for International Earth Science Information Network, Columbia University, NASA Socioeconomic Data and Applications Center (SEDAC), Palisades, NY, USA [www document]. URL http://dx.doi.org/10.7927/H4NZ85MP CrossRefGoogle Scholar
Courchamp, F., Hoffmann, B.D., Russell, J.C., Leclerc, C. & Bellard, C. (2014) Climate change, sea-level rise, and conservation: keeping island biodiversity afloat. Trends in Ecology and Evolution 29: 127130.CrossRefGoogle ScholarPubMed
Craigie, I.D., Baillie, J.E.M., Balmford, A., Carbone, C., Collen, B., Green, R.E. & Hutton, J.M. (2010) Large mammal population declines in Africa's protected areas. Biological Conservation 143: 22212228.Google Scholar
Devictor, V., Julliard, R., Couvet, D. & Jiguet, F. (2008) Birds are tracking climate warming, but not fast enough. Proceedings of the Royal Society: Biological Sciences 275: 2743–8.Google Scholar
Devictor, V., Mouillot, D., Meynard, C., Jiguet, F., Thuiller, W. & Mouquet, N. (2010) Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecology Letters 13: 1030–40.Google Scholar
Dunlop, M., Hilbert, D. W., Stafford Smith, M., Davies, R., James, C. D., Ferrier, S., House, A., Liedloff, A., Prober, S. M., Smyth, A., Martin, T. G., Harwood, T., Williams, K. J., Fletcher, C. & Murphy, H. (2012) Implications for policymakers: climate change, biodiversity conservation and the National Reserve System. Report. Canberra, Australia [www document]. URL http://www.swnrmstrategy.org.au/wp-content/uploads/2014/02/NRS_ReportSummary_20121.pdf Google Scholar
Evans, M.C., Watson, J.E.M., Fuller, R.A., Venter, O., Bennett, S.C., Marsack, P.R. & Possingham, H.P. (2011) The spatial distribution of threats to species in Australia. BioScience 61: 281289.Google Scholar
Feagin, R.A., Sherman, D.J. & Grant, W.E. (2005) Coastal erosion, global sea-level rise, and the loss of sand dune plant habitats. Frontiers in Ecology and the Environment 3: 359364.Google Scholar
Fischer, G., Shah, M., Tubiello, F.N. & van Velhuizen, H. (2005) Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990–2080. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 360: 2067–83.Google Scholar
Foden, W.B., Butchart, S.H.M., Stuart, S.N., Vié, J.-C., Akçakaya, H.R., Angulo, A., DeVantier, L.M., Gutsche, A., Turak, E., Cao, L., Donner, S.D., Katariya, V., Bernard, R., Holland, R.A., Hughes, A.F., O’Hanlon, S.E., Garnett, S.T., Sekercioğlu, C.H. & Mace, G.M. (2013) Identifying the world's most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PloS One 8: e65427.Google Scholar
Foden, W., Mace, G., Vié, J.-C., Angulo, A. & Butchart, S.H.M., DeVantier, L., Dublin, H., Gutsche, A., Studart, S. & Turak, E. (2008) Species susceptibility to climate change impacts. In: The 2008 Review of The IUCN Red List of Threatened Species, ed. Vié, J.-C., Hilton-Taylor, C. & Stuart, S.N.. Gland, Switzerland: IUCN.Google Scholar
Garnett, S., Franklin, D., Ehmke, G., Vanderwal, J., Hodgson, L., Pavey, C., Reside, A., Welbergen, J., Butchart, S., Perkins, G. & Williams, S. (2013) Climate change adaptation strategies for Australian birds. Report. National Climate Change Adaptation Research Facility, Gold Coast, Australia [www document]. URL http://www.nccarf.edu.au/publications/adaptation-strategies-australian-birds Google Scholar
Geldmann, J., Barnes, M., Coad, L., Craigie, I.D., Hockings, M. & Burgess, N.D. (2013) Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biological Conservation 161: 230238.CrossRefGoogle Scholar
Global Climate Model (2013) Spatial downscaling [www document]. URL http://www.ccafs-climate.org/spatial_downscaling/ Google Scholar
Grinsted, A., Moore, J.C. & Jevrejeva, S. (2009) Reconstructing sea level from paleo and projected temperatures 200 to 2100 AD. Climate Dynamics 34: 461472.CrossRefGoogle Scholar
Harris, S., Arnall, S., Byrne, M., Coates, D., Hayward, M., Martin, T., Mitchell, N. & Garnett, S. (2013) Whose backyard? Some precautions in choosing recipient sites for assisted colonisation of Australian plants and animals. Ecological Management and Restoration 14: 106111.Google Scholar
Hellmann, J.J., Byers, J.E., Biderwagen, B.G. & Dukes, J.S. (2008) Five potential consequences of climate change for invasive species. Conservation Biology 22: 534543.Google Scholar
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 19651978.Google Scholar
Hiley, J.R., Bradbury, R.B., Holling, M. & Thomas, C.D. (2013) Protected areas act as establishment centres for species colonizing the UK. Proceedings of the Royal Society: Biological Sciences 280: 20122310.Google Scholar
Hodgson, J.A., Thomas, C.D., Wintle, B.A. & Moilanen, A. (2009) Climate change, connectivity and conservation decision making: back to basics. Journal of Applied Ecology 46: 964969.Google Scholar
Intergovernmental Panel on Climate Change (2015) Survey of available SRES Scenarion Runs for TAR [www document]. URL http://www.ipcc-data.org/sim/gcm_monthly/SRES_TAR/index.html Google Scholar
IUCN SSC (2013) Guidelines for reintroductions and other conservation translocations. Version 1.0. Report. IUCN Species Survival Commission, Gland, Switzerland: viiii + 57 pp. [www document]. URL http://www.issg.org/pdf/publications/RSG_ISSG-Reintroduction-Guidelines-2013.pdf Google Scholar
IUCN (2015) IUCN protected areas categories system [www document]. URL http://www.iucn.org/about/work/programmes/gpap_home/gpap_quality/gpap_pacategories/ Google Scholar
Jarvis, A., Reuter, H.I., Nelson, A. & Guevara, E., (2008) Hole-filled SRTM for the globe version 4. CGIAR-CSI SRTM 90m database [www document]. URL http://srtm.csi.cgiar.org Google Scholar
Lavergne, S., Mouquet, N., Thuiller, W. & Ronce, O. (2010) Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities. Annual Review of Ecology, Evolution, and Systematics 41: 321350.CrossRefGoogle Scholar
Lawler, J.J. (2009) Climate change adaptation strategies for resource management and conservation planning. Annals of the New York Academy of Sciences 1162: 7998.Google Scholar
Leon, J. X., Heuvelink, G. B. M. & Phinn, S. R. (2014) Incorporating DEM uncertainty in coastal inundation mapping. PloS One, 9: e108727.Google Scholar
Lobell, D. B., Burke, M. B., Tebaldi, C., Mastrandrea, M. D., Falcon, W. P. & Naylor, R. L. (2008) Prioritizing climate change adaptation needs for food security in 2030. Science (New York, N.Y.), 319:, 607–10.Google Scholar
Mackey, B.G., Watson, J.E.M., Hope, G. & Gilmore, S. (2008) Climate change, biodiversity conservation, and the role of protected areas: an Australian perspective. Biodiversity 9: 1118.Google Scholar
Malcolm, J.R., Liu, C., Neilson, R.P., Hansen, L. & Hannah, L. (2006) Global warming and extinctions of endemic species from biodiversity hotspots. Conservation Biology 20: 538548.Google Scholar
Mantyka-pringle, C.S., Martin, T.G. & Rhodes, J.R. (2012) Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta-analysis. Global Change Biology 18: 12391252.Google Scholar
McClanahan, T.R., Cinner, J.E., Maina, J., Graham, N.A.J., Daw, T.M., Stead, S.M., Wamukota, A., Brown, K., Ateweberhan, M., Venus, V. & Polunin, N.V.C. (2008) Conservation action in a changing climate. Conservation Letters 1: 5359.Google Scholar
Mittermeier, R.A., Robles, Gil, P., Hoffman, M., Pilgrim, J., Brooks, T., Mittermeier, C.G.G., Lamoreux, J., Da Fonseca, G.A.B. & Gil, P.R. (2004) Hotspots Revisited: Earth's Biologically Richest and Most Endangered Ecoregions. Mexico City, Mexico: CEMEX.Google Scholar
Mittermeier, R.A., Turner, W.R., Larsen, F.W., Brooks, T.M. & Gascon, C. (2012) Global biodiversity conservation: the critical role of hotspots. In: Biodiversity Hotspots Distribution and Protection of Conservation Priority Areas, ed. Zachos, F. E. & Habel, J. C., pp. 322. New York, NY, USA: Springer.Google Scholar
NRMMC (2010) Australia's biodiversity conservation strategy 2010–2030. Report. Australian Government, Department of Sustainability, Environment, Water, Population and Communities, Canberra, Australia.Google Scholar
Nicholls, R.J. & Cazenave, A. (2010) Sea-level rise and its impact on coastal zones. Science 328: 1517–20.Google Scholar
Oswald, W.W., Brubaker, L.B., Hu, F.S. & Gavin, D.G. (2003) Pollen-vegetation calibration for tundra communities in the Arctic Foothills, northern Alaska. Journal of Ecology 91: 10221033.Google Scholar
Overpeck, J.T., Otto-Bliesner, B.L., Miller, G.H., Muhs, D.R., Alley, R.B. & Kiehl, J.T. (2006) Paleoclimatic evidence for future ice-sheet instability and rapid sea-level rise. Science 311: 1747–50.Google Scholar
Peñuelas, J., Sardans, J., Estiarte, M., Ogaya, R., Carnicer, J., Coll, M., Barbeta, A., Rivas-ubach, A., Llusià, J., Garbulsky, M., Filella, I. & Jump, A.S. (2013) Evidence of current impact of climate change on life: a walk from genes to the biosphere. Global Change Biology 19: 23032338.Google Scholar
Pereira, H.M., Leadley, P.W., Proença, V., Alkemade, R., Scharlemann, J.P.W., Fernandez-Manjarrés, J.F., Araújo, M.B., Balvanera, P., Biggs, R., Cheung, W.W.L., Chini, L., Cooper, H.D., Gilman, E.L., Guénette, S., Hurtt, G.C., Huntington, H.P., Mace, G.M., Oberdorff, T., Revenga, C., Rodrigues, P., et al. (2010) Scenarios for global biodiversity in the 21st century. Science 330: 1496–501.Google Scholar
Pfeffer, W.T., Harper, J.T. & O’Neel, S. (2008) Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science 321: 1340–3.Google Scholar
R Core Team (2013) R: a language and environment for statistical computing. Vienna, Austria [www document]. URL http://www.r-project.org/ Google Scholar
Rahmstorf, S. (2007) A semi-empirical approach to projecting future sea-level rise. Science 315: 368–70.Google Scholar
Raleigh, C. & Jordan, L. (2010) Climate change and migration: emerging patterns in the developing world. In: Social Dimensions of Climate Change: Equity and Vulnerability in a Warming World, ed. Mearns, R & Norton, A., pp. 103131. Washington, DC, USA: World Bank.Google Scholar
Ramirez-Villegas, J. & Jarvis, A. (2010) Downscaling global circulation model outputs: the delta method decision and policy analysis working paper no.1. Policy Analysis 1: 118 [www document]. URL http://www.ccafs-climate.org/downloads/docs/Downscaling-WP-01.pdf Google Scholar
Rexer, M. & Hirt, C. (2014) Comparison of free high resolution digital elevation data sets (ASTER GDEM2, SRTM v2.1/v4.1) and validation against accurate heights from the Australian National Gravity Database. Australian Journal of Earth Sciences 61: 213226.Google Scholar
Ricciardi, A. & Simberloff, D. (2009) Assisted colonization is not a viable conservation strategy. Trends in Ecology and Evolution 24: 248–53.Google Scholar
Runting, R.K., Wilson, K.A. & Rhodes, J.R. (2013) Does more mean less? The value of information for conservation planning under sea level rise. Global Change Biology 19: 352363.Google Scholar
Le Saout, S., Hoffmann, M., Shi, Y., Hughes, A., Bernard, C., Brooks, T.M., Bertzky, B., Butchart, S.H.M., Stuart, S.N., Badman, T. & Rodrigues, A.S.L. (2013) Protected areas and effective biodiversity conservation. Science 342: 803805.Google Scholar
Schmitt, C.B. (2011) A tough choice: approaches towards the setting of global conservation priorities. In: Biodiversity Hotspots Distribution and Protection of Conservation Priority Areas, ed. Zachos, F. E. & Habel, J. C., pp. 2342. Berlin, Germany: Springer Berlin Heidelberg.Google Scholar
Shoo, L. P., O’Mara, J., Perhans, K., Rhodes, J. R., Runting, R. K., Schmidt, S., Traill, L.W., Weber, L.C., Wilson, K.A. & Lovelock, C. E. (2014) Moving beyond the conceptual: specificity in regional climate change adaptation actions for biodiversity in South East Queensland, Australia. Regional Environmental Change, 14: 435447.Google Scholar
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. & Miller, H.L. (2007) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA: Cambridge University Press.Google Scholar
Thackway, R. & Cresswell, I., eds (1995) An interim Biogeographic Regionalisation for Australia; A Framework for Establishing the National System of Reserves, version 4.0. Canberra, Australia: Australian Nature Conservation Agency. Google Scholar
Thomas, C.D. (2011) Translocation of species, climate change, and the end of trying to recreate past ecological communities. Trends in Ecology and Evolution 26: 216221.Google Scholar
Veloz, S.D., Williams, J.W., Blois, J.L., He, F., Otto-Bliesner, B. & Liu, Z. (2012) No-analog climates and shifting realized niches during the late Quaternary: implications for 21st-century predictions by species distribution models. Global Change Biology 18: 16981713.Google Scholar
Veloz, S. & Williams, J. (2011) Identifying climatic analogs for Wisconsin under 21st -century climate-change scenarios. Climatic Change 112: 10371058.Google Scholar
Walther, G.-R., Roques, A., Hulme, P.E., Sykes, M. T., Pysek, P., Kühn, I., Zobel, M., Bacher, S., Botta-Dukát, Z., Bugmann, H., Czúcz, B., Dauber, J., Hickler, T., Jarosík, V., Kenis, M., Klotz, S., Minchin, D., Moora, M., Nentwig, W., Ott, J., Panov, V.E., Reineking, B., Robinet, C., Semenchenko, V., Solarz, W., Thuiller, W., Vilà, M., Vohland, K. & Settele, J. (2009) Alien species in a warmer world: risks and opportunities. Trends in Ecology and Evolution 24: 686–93.Google Scholar
Watson, J.E.M., Fuller, R.A., Watson, A.W.T., Mackey, B.G., Wilson, K.A., Grantham, H.S., Turner, M., Klein, C.J., Carwardine, J., Joseph, L.N. & Possingham, H.P. (2009) Wilderness and future conservation priorities in Australia. Diversity and Distributions 15: 10281036.Google Scholar
Webb, A.P. & Kench, P.S. (2010) The dynamic response of reef islands to sea-level rise: evidence from multi-decadal analysis of island change in the Central Pacific. Global and Planetary Change 72: 234246.Google Scholar
Wetzel, F.T., Beissmann, H., Penn, D.J. & Jetz, W. (2013) Vulnerability of terrestrial island vertebrates to projected sea-level rise. Global Change Biology 19: 2058–70.Google Scholar
Wetzel, F.T., Kissling, W.D., Beissmann, H. & Penn, D.J. (2012) Future climate change driven sea-level rise: secondary consequences from human displacement for island biodiversity. Global Change Biology 18: 27072719.Google Scholar
Williams, J.W., Jackson, S.T. & Kutzbach, J.E. (2007) Projected distributions of novel and disappearing climates by 2100 AD. Proceedings of the National Academy of Sciences USA 104: 5738–42.Google Scholar
Williams, K.J., Ford, A., Rosauer, D.F., Silva, N. De, Russell, Mittermeier, C.B., Larsen, F.W. & Margules, C. (2011) Forests of East Australia: the 35th biodiversity hotspot. In: Biodiversity Hotspots Distribution and Protection of Conservation Priority Areas, ed. Zachos, F.E. & Habel, J. C., pp. 295310. Vienna, Austria: Springer.Google Scholar
Supplementary material: File

Bellard supplementary material

Figure S1-S8 and Table S1-S5

Download Bellard supplementary material(File)
File 2.5 MB