Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-15T01:30:47.319Z Has data issue: false hasContentIssue false

The age of infection with varicella-zoster virus in St Lucia, West Indies

Published online by Cambridge University Press:  19 October 2009

G. P. Garnett
Affiliation:
Parasite Epidemiology Research Group, Department of Biology, Imperial College of Science, Technology and Medicine, London SW7 2BB
M. J. Cox
Affiliation:
Parasite Epidemiology Research Group, Department of Biology, Imperial College of Science, Technology and Medicine, London SW7 2BB
D. A. P. Bundy
Affiliation:
Parasite Epidemiology Research Group, Department of Biology, Imperial College of Science, Technology and Medicine, London SW7 2BB
J. M. Didier
Affiliation:
Parasite Epidemiology Project, University Centre, P.O. Box 306, Castries, St Lucia, West Indies
J. St. Catharine
Affiliation:
Ministry of Health, Castries, St Lucia, West Indies
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Sera from an age-stratified sample of 1810 people from the Caribbean island of St Lucia were tested for antibodies against varicella-zoster virus. The results indicate that very few infections occur in childhood, which agrees with clinical survey data from other tropical countries, but contrasts with the observed high case rate in children in temperate countries. The alternative hypotheses which may explain these results are discussed, and it is suggested that high ambient temperatures interfere with the transmission of the virus. Irrespective of the cause, the pattern of varicella incidence observed has important implications for any vaccination policy adopted in tropical countries.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

References

REFERENCES

1.Heath, Rb. Varicella-zoster. In: Aj, Zuckcrmnn, Banntvala, Je, Pattison, Jr. eds. Principles and practice of clinical virology, 2nd ed.Chichester: John Wiley & Son, 1990; 4368.Google Scholar
2.Garnett, Gp, Grenfell, Bt. The epidemiology of varicella-zoster vims infections: a mathematical model. Epidemiol Infect 1992; 108: 495511.CrossRefGoogle Scholar
3.Mauritee, Z, Cooray, Mpm. Comparisons between chickenpox in a tropical and a European country. J Trop Med Hyg 1963; 66: 311–15.Google Scholar
4.Salomon, Jb, Gordon, Je, Scrimshaw, Ns. Studies of diarrheal disease in Central America. X. Associated chickenpox diarrhea and kwashiorkor in a highland Guatemalan village. Am J. Trop Med Hyg 1966; 15: 9971002.CrossRefGoogle Scholar
5.Sinha, Dp. Chickenpox – a disease predominantly affecting adults in rural West Bengal, India. Int J Epidemiol 1970; 5: 307–74.Google Scholar
6White, E.Chickenpox in Kerala. Indian J Public Health 1978; 22: 142–51.Google ScholarPubMed
7.Venkitaraman, Ar, John, Tj.The epidemiology of varicella in staff and students of a hospital in the tropics. Int J Epidemiol 1984; 13: 502–5.CrossRefGoogle ScholarPubMed
8.lyun, F.Chickenpox occurrence in Ibadan City. A geographic perspective. Geographica Medica 1984; 14: 7396.Google Scholar
9.May, Rm, Anderson, Rm.Endemic infections in growing populations. Math Biosci 1985; 76: 116.Google Scholar
10.Preblud, Sr.Age specific risks of varicella complications. Pediatr 1981; 68: 1417.CrossRefGoogle ScholarPubMed
11.Black, Fl, Hierholzer, Wj, Pinheiro, Fdp et al. Evidence for persistence of infectious disease agents in isolated human populations. Am J. Epidemiol 1974; 100: 230–50.CrossRefGoogle Scholar
12.Evans, As, Cook, Ja, Kapikian, Az, Nanheru, S G.Smith, Al, West, B.A seriological survey of St Lucia. Int J Epidemiol 1979; 8: 327–32.CrossRefGoogle Scholar
13.Leventon-Kriss, S, Yoffe, R, Rannon, L, Modan, M.Seroepidemiologic aspects of varicellazoster virus infections in an Israeli Jewish population. Israeli J Med Sci 1978; 14: 766–70.Google Scholar
14.Margalith, M, Fattal, B, Shuval, Hi, Morag, A.Prevalence of antibodies to enteroviruses and varicella-zoster virus among residents and overseas volunteers at agricultural settlements in Israel. J Med Virol 1986; 20: 189–97.CrossRefGoogle ScholarPubMed
15.Venkitaraman, Ar, Seigneurin, Jm, Baccard, M, Lenoir, Gm, John, Jj.Measurement of antibodies to varicella-zoster virus in a tropical population by enzyme-linked immunosorbent assay. J Clin Microbiol 1984; 20: 582–3.CrossRefGoogle Scholar
16Venkitaraman, Ar, Seigneurin, Jm, Lenoir, Gm, John, Jj.Infections due to human herpesviruses in Southern India: a seroepidemiological survey. Int J Epidemiol 1986: 15: 561–6.CrossRefGoogle ScholarPubMed
17.Forghani, B, Schmidt, Nt, Dennis, J.Antibody assays for varicella-zoster virus: comparison of enzyme immunoassay with neutralization, immune adherence hemagglutination, and complement fixation. J Clin Microbiol 1978; 8: 545–52.CrossRefGoogle ScholarPubMed
18.Gerson, Aa, Raker, R, Steinberg, S, Topf-Olstein, B, Drusin, Lm.Antibody to varicella-zoster virus in parturient women and their off spring during the first year of life. Pediatr 1976: 58: 692–6.CrossRefGoogle Scholar
19.Cox, Mj, Anderson, Rm, Bundy, Dap et al. Seroepidemiological study of the transmission of the mumps virus in St Lucia, West Indies. Epidemiol Infect 1989; 102: 147–60.CrossRefGoogle Scholar
20.Forghani, B, Schmidt, Nj, Dennis, J.Antibody asseys for varicella-zoster virus: comparison of enzyme immuno-assay with neutralisation immune adherence haemagglutination and complement fixation. J Clin Microbiol 1978; 8: 545–52.CrossRefGoogle Scholar
21.Shehab, Z, Brunell, Pa.Enzyme-linked immunosorbent assay for susceptibility to varicella. J Infect Dis 1983; 148: 472–6.Google ScholarPubMed
22.Nahmias, Aj, Keyserling, H, Lee, Fk. Herpes simplex virus 1 and 2. In: Evans AS. ed. Viral infections of humans: epidemiology and control. New York: Plenum Medical Book Company, 1989: 393413.CrossRefGoogle Scholar
23.Cox, Mj. Seroepidemiology of measles, mumps and rubella in St. Lucia and Jamaica [Thesis]. London, Imperial College, 1989.Google Scholar
24.Schneweis, Ke, Krentler, Ch, Wolff, Mh.Durchseuschung ink dem varicella-zoster Virus und serologische Feststellung der Erstinfectionsimmunität. Dtsch Med Wschr 1985: 110: 453–7.CrossRefGoogle Scholar
25.McLean, Ar, Anderson, Rm.The transmission dynamics of the measles virus in developing countries. Part I. Epidemiological parameters and patterns. Epidemiol Infect 1988: 100: 111–33.CrossRefGoogle Scholar
26.Morgan-Capner, P, Wright, J, Miller, Cl.Miller, E.Surveillance of antibody to measles, mumps and rubella by age. BMJ 1988; 297: 770–2.CrossRefGoogle ScholarPubMed
27.Wagenvoort, Jh, Harmsen, M.Boutakar-Trour, Bj, Kranijeveld, Ca.Winkler, Kc.Epidemiology of mumps in the Netherlands. J Hyg 1980; 85: 313–16.CrossRefGoogle ScholarPubMed
28.Grenfell, Bt, Anderson, Rm.The estimation of age-related rates of infection from case notifications and serological data. J Hyg 1985; 95: 419–63.CrossRefGoogle ScholarPubMed
29.Asano, Y, Iwayama, S, Miyaka, T, Yazaki, T.Spread of varicella in hospitalised children having no direct contact with an indicator zoster case and its prevention by a live vaccine. Biken J 1980; 23: 157–61.Google ScholarPubMed
30.Leclair, Jm, Zaia, Ja, Levein, Mj, Congdon, Rg, Goldmann, Da.Airborne transmission of chickenpox in a hospital. New Eng J Med 1980; 302: 450–3.CrossRefGoogle ScholarPubMed
31.Gordon, Je, Meader, Fm. The period of infectivity and serum prevention of chickenpox. JAMA 1929; 93: 2013–15.Google Scholar
32.Evans, P.An epidemic of chickenpox. Lancet 1940; ii: 399.Google Scholar
33.Gordon, Je.Chickenpox: an epidemiological review. Am J Med Sci 1962; 244: 362–85.CrossRefGoogle ScholarPubMed
34.Yorke, Ja, London, Wp.Recurrent outbreaks of measles, chickenpox and mumps: systematic differences in contact rates and stochastic effects. Am J Epidemiol 1973; 98: 469–82.CrossRefGoogle ScholarPubMed
35.Weller, Th. Varicella-herpes zoster virus. In: As, Evans, ed. Viral infections of humans, epidemiology and control. New York: Plenum Medical Book Company, 1989: 659683.CrossRefGoogle Scholar
36.Nelson, Am, St Geme, Jw. JrOn the respiratory spread of varicella-zoster virus. Pediatr 1966; 37: 1007–9.CrossRefGoogle ScholarPubMed
37.Gold, E.Serologic and virus isolation studies of patients with varicella or herpes-zoster infection. New Eng J Med 1966; 274: 181–5.CrossRefGoogle ScholarPubMed
38.Weller, Th.Serial propagation in vitro of agents producing inclusion bodies derived from varicella and herpes-zoster. Proc Soc Exp Biol Med 1953; 83: 340–6.CrossRefGoogle ScholarPubMed
39.The Times Atlas of the World: comprehensive edition. London: Times Books Ltd, 1985.Google Scholar
40.Schenzle, D.An age structured model of pre- and post-vaccination measles transmission. IMAJ Mth Appl Med Biol 1984; 1: 169–91.CrossRefGoogle ScholarPubMed
41.Hope-Simpson, Re.Studies on shingles – is the virus ordinary chickenpox virus? Lancet 1954; ii: 1299.Google Scholar
42.Beale, Aj.Polio vaccines: time for a change in immunisation policy? Lancet 1990; 335: 839–42.CrossRefGoogle ScholarPubMed
43.Kapsenberg, Jg.Possible antigenic relationship between varicella-zoster virus and herpes-simplex virus. Arch Ges Virusforsch 1964; 15: 6773.CrossRefGoogle ScholarPubMed
44.Ross, Cac, Sharpe, Jhs, Ferry, P.Antigenic relationship of varicella-zoster and herpessimplex. Lancet 1965; ii: 708–11.CrossRefGoogle Scholar
45.Edson, Cm, Hosier, Ba, Respass, Ra, Waters, Dj, Thornley-Lawson, Da.Cross-reactivity between herpes-simplex virus glycoprotein B and a 63,000 Dalton varicella-zoster virus envelope glycoprotein. J Virol 1985; 56: 333–6.CrossRefGoogle Scholar
46.Wolff, Mh, Buchel, F, Zoll, A.Serological studies on the antigenic relationship between herpes simplex virus and varicella zoster virus. Immunobiol 1979; 156: 7682.Google ScholarPubMed
47.Gershon, Aa, LaRussa, P, Hardy, I, Steinberg, S, Silverstein, S.Varicella vaccine: the American experience. J Infect Dis 1992; 166: S63S68.CrossRefGoogle ScholarPubMed