Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-15T01:45:54.276Z Has data issue: false hasContentIssue false

An adhesive surface sampling technique for airborne viruses

Published online by Cambridge University Press:  15 May 2009

G. Thomas
Affiliation:
Microbiological Research Establishment, Porton Down, Salisbury, Wilts.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A mixture of sucrose, glycerol and bovine serum albumin produces a stable coating in a Petri dish which remains adhesive for up to an hour when exposed in a slit sampler. Virus aerosols can be collected on this surface followed the direct addition of cell cultures to demonstrate the presence of viable virus. The technique is applicable to the Andersen sampler. A modified version of this sampler has been produced with the same particle collection efficiency as the standard Andersen sampler. The plaque counts obtained the adhesive surface sampling technique are believed to give an indication of the number of particles collected bearing viable virus.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1970

References

REFERENCES

Andersen, A. (1958). A new sampler for the collection, sizing and enumeration of viable airborne particles. Journal of Bacteriology 76, 471.Google Scholar
Appleyard, G. & Westwood, J. C. N. (1964). The growth of rabbit pox virus in tissue cultures. Journal of General Microbiology 37, 391.CrossRefGoogle Scholar
Artenstein, M. S. & Cadigan, F. C. Jr. (1964). Air sampling in viral respiratory disease. Archives of Environmental Health 9, 58.CrossRefGoogle Scholar
Artenstein, M. S., Miller, W. S., Lamson, T. H. & Brandt, B. L. (1968). Large volume air sampling for meningococci and adenoviruses. American Journal of Epidemiology 87, 567.Google Scholar
Bourdillon, R. B., Lidwell, O. M. & Thomas, J. C. (1941). A slit sampler for collecting and counting airborne bacteria. Journal of Hygiene 41, 197.Google Scholar
Couch, R. B., Gerone, P. J., Gate, T. R., Griffith, W. R., Alling, D. W. & Knight, V. (1965). Preparation and properties of a small particle aerosol of Coxsackie A 21. Proceedings of the Society for Experimental Biology and Medicine 118, 818.CrossRefGoogle Scholar
Dahlgren, C. M., Decker, H. M. & Harstad, J. B. (1961). A slit sampler for collecting T3 bacteriophage and Venezuelan equine encephalomyelitis virus. 1. Studies with T3 bacteriophage. Applied Microbiology 9, 103.Google Scholar
Davies, C. N., Aylward, M. S. & Lacey, D. (1951). Impingement of dust from air jets. American Medical Association Archives of Industrial Hygiene 4, 354.Google Scholar
Downie, A. W., Meiklejohn, M., Vincent, L. St, Rao, A. R., Sundara, Babu B. V. & Kempe, C. H. (1965). The recovery of smallpox from patients and their environment in smallpox hospitals. Bulletin of the World Health Organization 33, 615.Google Scholar
Erhlich, R., Miller, S. & Idoine, L. S. (1966). Use of slit sampler in comparison with impinger. Applied Microbiology 14, 328.Google Scholar
Gerone, P. J., Couch, R. B., Garrett, V. K., Douglas, R. G., Derrenbacker, E. B. & Knight, V. (1966). Assessment of experimental and natural aerosols. Bacteriological Reviews 30, 576.Google Scholar
Goldberg, L. J., Watkins, H. M. S., Boerke, E. E. & Chatingny, M. A. (1958). The use of a rotating drum in the study of aerosols over extended periods of time. American Journal of Hygiene 68, 85.Google Scholar
Guerin, L. F. & Mitchell, C. A. (1964). A method for determining the concentration of airborne virus and sizing droplet nuclei containing the agent. Canadian Journal of Comparative Medicine 28, 283.Google Scholar
Henderson, D. W. (1952). An apparatus for the study of airborne infections. Journal of Hygiene 50, 53.Google Scholar
Jensen, M. M. (1964). Inactivation of airborne virus U.V. irradiation. Applied Microbiology 12, 418.Google Scholar
Kuehne, W. R. & Gochenour, W. S. (1961). A slit sampler for collecting T3 bacteriophage and Venezuelan equine encephalomyelitis virus. 2. Studies with Venezuelan equine encephalomyelitis virus. Applied Microbiology 9, 105.CrossRefGoogle Scholar
Maclean, D. M., Bannatyne, R. M. & Givan, K. F. (1967). Myxovirus dissemination air. Canadian Medical Association Journal 96, 1449.Google Scholar
May, K. R. (1966). A multistage liquid impinger. Bacteriological Reviews 30, 559.Google Scholar
Rechsteiner, J. (1968). Phenomena of Decay in Respiratory Syncytial Virus. Rotterdam: Bronder-Offset.Google Scholar
Smithburn, K. C. & Haddow, A. J. (1944). Semliki Forest virus. Journal of Immunology 49, 141.Google Scholar
Vlodavets, V. V., Gaidamovich, S. Y. & Obukhova, V. R. (1960). Methods of trapping influenza virus in the droplet phase of an aerosol. Problems of Virology 5, 728.Google Scholar
Westwood, J. C. N., Boulter, E. A., Bowen, E. T. & Maber, H. B. (1966). Experimental respiratory infection with pox viruses. 1. Clinical, virological and epiderniological studies. British Journal of Experimental Pathology 48, 453.Google Scholar
Winkles, W. G. (1968). Airborne rabies virus isolation. Bulletin of the Wildlife Diseases Association 4, 37.Google Scholar
Wolfe, L. G., Greisemer, R. A. & Farrell, R. L. (1968). Experimental transmission of Yaba virus in monkeys. Journal of the National Cancer Institute 41, 1175.Google Scholar