Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T03:29:28.817Z Has data issue: false hasContentIssue false

Comparison of pulsed-field gel electrophoresis and ribotyping for subtyping of Vibrio cholerae O139 isolated in Thailand

Published online by Cambridge University Press:  15 May 2009

A. Dalsgaard
Affiliation:
Department of Veterinary Microbiology, The Royal Veterinary and Agricultural University, DK-1870 Frederiksberg C, Denmark
M. N. Skov
Affiliation:
Department of Veterinary Microbiology, The Royal Veterinary and Agricultural University, DK-1870 Frederiksberg C, Denmark
O. Serichantalergs
Affiliation:
Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
P. Echeverria
Affiliation:
Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Pulsed-field gel electrophoresis (PFGE) of Cpo I-digested genomic DNA and ribotyping (Bgl I) were applied to 60 Vibrio cholerae strains including 48 V. cholerae O139 from Thailand to compare their value in differentiating strains of the present V. cholerae O139 epidemic. PFGE patters were divided into groups A and B representing five and four subtypes, respectively, while ribotyping showed four different patterns. PFGE group B subtypes were only presented among O139 isolates from Thailand, whereas four O139 strains from Bangladesh and India showed identical PFGE group A subtypes observed in O139 isolates from Thailand. Two nontoxigenic O139 isolates from Thailand showed different and unique PFGE types as did five V. cholerae non-Ol non-O139 isolates containing a gene virulence complex found in V. cholerae O139. These results indicate that PFGE (Cpo I) can resolve recent evolutionary divergence within V. cholerae O139 and offers a useful supplementary tool for following the progressing V. cholerae O139 epidemic.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

References

1.Albert, MJ, Siddique, AK, Islam, MS, et al. Large outbreak of clinical cholera due to Vibrio cholerae non-O1 in Bangladesh. Lancet 1993; 341: 704–5.CrossRefGoogle ScholarPubMed
2.Cholera Working Group. Large epidemic of cholera-like disease in Bangladesh caused by Vibrio cholerae O139 synonym Bengal. Lancet 1993; 342: 387–90.CrossRefGoogle Scholar
3.Ramamurthy, T, Garg, S, Sharma, R, et al. Emergence of novel strain of Vibrio cholerae with epidemic potential in southern and eastern India. Lancet 1993; 341: 703–4.CrossRefGoogle ScholarPubMed
4.Chongsa-nguan, M, Chaicumpa, W, Moolasart, P, et al. Vibrio cholerae O139 Bengal in Bangkok. Lancet 1993; 342: 430–1.CrossRefGoogle ScholarPubMed
5.Echeverria, P, Hoge, CW, Bodhidatta, L, et al. Molecular characterization of Vibrio cholerae O139 isolates from Asia. Am J Trop Med Hyg 1995; 52: 124–7.CrossRefGoogle ScholarPubMed
6.Bodhidatta, L, Echeverria, P, Hoge, CW, et al. Vibrio cholerae O139 in Thailand in 1994. Epidemiol Infect 1995; 114: 71–3.CrossRefGoogle ScholarPubMed
7.World Health Organization. Epidemic diarrhoea due to Vibrio cholerae non-O1. Weekly Epidemiol Rec 1993; 68: 141–2.Google Scholar
8.Swerdlow, DL, Ries, AA.Vibrio cholerae non-O1-the eight pandemic? Lancet 1993; 342: 382–3.Google Scholar
9.Albert, MJ.Vibrio cholerae O139 Bengal. Minireview. J Clin Microbiol 1994; 32: 2345–9.CrossRefGoogle ScholarPubMed
10.Faruque, SM, Abdul Alim, RM, Roy, SK, et al. Molecular analysis of rRNA and cholera toxin genes carried by the new epidemic strain of toxigenic Vibrio cholerae O139 synonym Bengal. J Clin Microbiol 1994; 32: 1050–3.CrossRefGoogle ScholarPubMed
11.Popovic, T, Bopp, CA, Olsvik, Ø, Wachsmuth, K.Epidemiologic application of a standardized ribotype scheme for Vibrio cholerae O1. J Clin Microbiol 1993; 31: 2474–82.CrossRefGoogle ScholarPubMed
12.Dalsgaard, A, Serichantalergs, O, Pitarangsi, C, Echeverria, P.Molecular characterization and antibiotic susceptibility patterns of Vibrio cholerae non-O1. Epidemiol Infect 1995; 114: 5163.CrossRefGoogle ScholarPubMed
13.Dalsgaard, A, Echeverria, P, Larsen, JL, Siebeling, R, Serichantalergs, O, Huss, HH.Application of ribotyping for differentiating Vibrio cholerae non-O1 isolates from shrimp farms in Thailand. Appl Environ Microbiol 1995; 61: 245–51.CrossRefGoogle ScholarPubMed
14.Wachsmuth, IK, Evins, GM, Fields, PI, et al. The molecular epidemiology of cholera in Latin America. J Infect Dis 1993; 167: 621–6.CrossRefGoogle ScholarPubMed
15.Cameron, DN, Khambaty, FM, Wachsmuth, KI, Tauxe, RV, Barrett, TJ.Molecular characterization of Vibrio cholerae O1 strains by pulsed field gel electrophoresis. J Clin Microbiol 1994; 32: 1685–90.CrossRefGoogle ScholarPubMed
16.Popovic, T, Fields, PI, Olsvik, Ø, et al. Molecular subtyping of toxigenic Vibrio cholera O139 causing epidemic cholera in India and Bangladesh, 19921993. J Infect Dis 1995; 171: 122–7.CrossRefGoogle Scholar
17.Bhadra, RK, Choudhury, SR, Das, J.Vibrio cholerae O139 El Tor biotype. Lancet 1994; 343: 728.CrossRefGoogle ScholarPubMed
18.Berche, P, Poyart, C, Abachin, E, Lelievre, H, Vandepitte, J, Dodin, A, Fournier, J.The novel epidemic strain O139 is closely related to the pandemic strain O1 of Vibrio cholerae. J Infect Dis 1994; 170: 701–4.CrossRefGoogle Scholar
19.Pace, NR, Olsen, GJ, Woese, CR.Ribosomal RNA phylogeny and the primary lines of evolutionary descent. Cell 1986; 45: 325–6.CrossRefGoogle ScholarPubMed
20.Hanchalay, S, Seriwatana, J, Echeverria, P, et al. Non-Ol Vibrio cholerae in Thailand: homology with cloned cholera toxin genes. J Clin Microbiol 1985; 21: 288–9.CrossRefGoogle Scholar
21.Echeverria, P, Harrison, BA, Tirapat, C, McFarland, A.Flies as a source of enteric pathogens in a rural village in Thailand. Appl Environ Microbiol 1983; 46: 32–6.CrossRefGoogle Scholar
22.Skov, MN, Pedersen, K, Larsen, JL.Comparison of pulsed-field gel electrophoresis, ribotyping, and plasmid profiling for typing of Vibrio anguillarum serovar Ol. Appl Environm Microbiol 1995; 61: 1540–5.CrossRefGoogle Scholar
23.Chu, G, Vollrath, D, Davis, RW.Separation of large DNA molecules by contour-clamped homogeneous electric fields. Science 1986; 234: 1582–3.CrossRefGoogle ScholarPubMed
24.Pedersen, K, Larsen, JL.rRNA gene restriction patterns of Vibrio anguillarum serogroup Ol. Dis Aquat Org 1993; 16: 121–6.CrossRefGoogle Scholar
25.Arbeit, RD, Arthur, M, Dunn, R, Kim, C, Selander, RK, Goldstein, R.Resolution of recent evolutionary divergence among Escherichia coli from related lineages: the application of pulsed field electrophoresis to molecular epidemiology. J Infect Dis 1990; 161: 230–5.CrossRefGoogle ScholarPubMed
26.Goering, RV, Duensing, TD.Rapid field inversion gel electrophoresis in combination with an rRNA gene probe in the epidemiological evaluation of staphylo-cocci. J Clin Microbiol 1990; 28: 426–9.CrossRefGoogle Scholar
27.Prévost, G, Pottecher, B, Dahlet, M, Bientz, M, Mantz, JM, Piémont, Y.Pulsed field gel electrophoresis as a new epidemiological tool for monitoring methicillin-resistant Staphylococcus aureus in an intensive care unit. J Hosp Infect 1991; 17: 255–69.CrossRefGoogle Scholar
28.Mathew, MK, Hui, C-F, Smith, CL, Cantor, CR.High-resolution and accurate size determination in pulsed-field gel electrophoresis of DNA. 4. Influence of DNA topology. Biochemistry 1988; 27: 9222–6.CrossRefGoogle ScholarPubMed
29.Baril, C, Richaud, C, Baranton, G, Girons, IS.Linear chromosome of Borrelia burgdorferi. Res Microbiol 1989; 140: 507–16.CrossRefGoogle ScholarPubMed
30.Kurazono, H, Okuda, J, Takeda, Y, et al. Vibrio cholerae O139 bengal isolated from India, Bangladesh and Thailand are clonal as determined by pulsed-field gel electrophoresis. J Infect Dis 1994; 170: 109–10.Google Scholar
31.Shimada, T, Arakawa, E, Itoh, K, et al. Extended serotyping scheme for Vibrio cholerae. Curr Microbiol 1994; 28: 175–8.CrossRefGoogle Scholar