Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T05:02:27.599Z Has data issue: false hasContentIssue false

Cost–benefit analysis of tetanus prophylaxis by a mathematical model

Published online by Cambridge University Press:  15 May 2009

A. Carducci
Affiliation:
Department of Experimental, Infective and Public Biomedicine, Section of Hygiene and Epidemiology, University of Pisa, Via S. Zeno, 35, 1-56100 Pisa, Italy
C.M. Avio
Affiliation:
Department of Experimental, Infective and Public Biomedicine, Section of Hygiene and Epidemiology, University of Pisa, Via S. Zeno, 35, 1-56100 Pisa, Italy
M. Bendinelli
Affiliation:
Department of Experimental, Infective and Public Biomedicine, Section of Hygiene and Epidemiology, University of Pisa, Via S. Zeno, 35, 1-56100 Pisa, Italy
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A mathematical model has been developed which allows estimation of the epidemiological and economic effects of different tetanus vaccination strategies. The model was used to simulate the epidemiology of tetanus in italy from 1955 to 1982, and then applied to a district of Tuscany by utilizing data obtained from a seroepidemiological survey carried out in the same area. For this district we simulated vaccination programmes designed to reach, within 1 or 10 years, coverages of 60 or 90% of the population aged over 10 years who had not been exposed to the neonatal vaccination programme. The most effective strategy, from both the epidemiological and economic point of view, seems to be 90% coverage reached in 1 year's time. Benefits would be increased by improving the reliability of vaccinal anamnesis.

Type
Special Article
Copyright
Copyright © Cambridge University Press 1989

References

REFERENCES

Anderson, R.M. (1982). The population Dynamics of infectons Diseases: Theory and Applications.London: Chapman and Hall.Google Scholar
Bailey, N.T.J. (1975). The Mathematical Theory of Infectious Diseases and its Applications. 2nd edn. London:Griffin.Google Scholar
Bergamini, F.,Borgonovi, E., Chiaramonte, M., Colombo, M., Crovari, P., Dardanoni, L., De Bac, C., Dellamano, R., Giusti, G., Moroni, M., Di Raimondo, F. & Ricci, G/(1983).Un programma di vaceinazione contro l'epatite da virus B.in Uno strumento operatiro per la decisione in sanita': I'analisi costi-benefici Borgonovi, E. and Dellamano, R..pp. 171226. Milano: Franco Angeli Editore.Google Scholar
Bistoni, F., Marconi, P., Bastianini, L., Tissi, L., Pitzurra, M. & Greco, M. (1978). The state of antitetanus protection in the comune of Perugia. Bollettino dell'Istituto Sieroterapico Milanese 57, 583589.Google Scholar
Bizzini, B. (1984). Tetanus.In Bacterial Vaccines(ed.Germanier, R.), pp. 3768.CrossRefGoogle Scholar
Carducci, A., Guerra, D., Lelli, S., Mixhelotti, F., Ruschi, A. & Avio, C.M. (1986). Cost-benefit model in the tetanus prophylaxis.Proceedings of the ‘IX Congresso Jonico di aggiornamento in Igiene e Microbiologia’,Taranto.Google Scholar
Carducci, A., Ruschi, D., Guerra, D., Lelli, S., Mixhelotti, F. & Avio, C.M. (1987).Antitetanus immunity in a sample of Tuscany population. Bollettino dell'Istituto Sieroterapico Milanese 66, 229234.Google Scholar
Cvjetanovic, B., Grab, B. & Uemura, K. (1978). Dynamics of acute bacterial diseases. Epidemiological models and their application in public health. Bulletin of the World Health Organization 56 (Suppl. 1), 1143.Google Scholar
Gottlieb, S., McLaughlin, F.X., Levine, L., Latham, W.C. & Edsall, G. (1964). Long-term immunity to tetanus. A statistical evaluation and its clinical implications. American Journal of Public Health 54. 961971.CrossRefGoogle ScholarPubMed
Grab, B. & Cvjetanovic, B. (1971).Simple method for rough determination of the cost-benefit balance point of immunization programmes. Bulletin of the World Health Organization 45.536541.Google Scholar
ISTAT(19551982)Annuari delle statistiche sanitarie.Google Scholar
O.E.R. of Tuscany Region (1981)Sommario/Dati demografici.Google Scholar
Pallegrini, M.G., Nardi, G., Cocchioni, M., Tarantini, F. (1985).Prevalenza del'immunita antitetanica in eampioni di popolazione marchigiana. Bollettino dell'Istituto Serioterapico Milanese 64, 368393.Google Scholar
Porro De Somenzi, C. (1979). Analisi dei costi-benefici.Annali Sclavo 21 (Suppl. 1). 373376.Google Scholar
Ribero, M. L., Tagger, A. & Fara, G. M. (1983). Epidemiologia del tetano. Bollettino dell'Istituto Sieroterapico Milanese 62, 543549.Google Scholar
Smith, A. L. (1985). Principles of Microbiology. 10th ed.St Louis: Times Mirror/Mosby College Publishing.Google Scholar