Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-14T14:02:26.699Z Has data issue: false hasContentIssue false

Epidemiological study of Salmonella enteritidis strains of animal origin in Belgium

Published online by Cambridge University Press:  15 May 2009

P. Pohl
Affiliation:
Institut National de Recherches Vétérinaires, Groeselenberg 99-B-1180, Bruxelles
P. Lintermans
Affiliation:
Institut National de Recherches Vétérinaires, Groeselenberg 99-B-1180, Bruxelles
M. Marin
Affiliation:
Institut National de Recherches Vétérinaires, Groeselenberg 99-B-1180, Bruxelles
M. Couturier
Affiliation:
Université Libre de Bruxelles, rue des Chevaux 67-B-1640, Rhode-St-Genèse
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Since 1987, the number of cases of salmonellosis caused by Salmonella enteritidis has considerably increased in Western Europe. Comparison of endemic animal strains isolated in Belgium from 1976–84 with strains isolated from 1987 on shows that the strains which cause the current epidemic have no features distinguishing them from the previously–isolated strains and that furthermore, they do not constitute a bacterial clone. They belong to 13 different lysotypes and in most cases remain sensitive to antibiotics. Nevertheless, the lysotype 33 which belongs to the phage type 4 [1] has increased significatively. It encompasses 37 % of the animal strains isolated in Belgium from 1987–9, but only 7% of the strains isolated from 1976–84.

It is worth noting that the endemic as well as the epidemic strains contain a virulence plasmid sharing sequence similarities with the FIB and FIIA plasmid replicons and with the VirA and VirB virulence regions of the S. typhimurium virulent plasmid: pIP1350.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

References

1.Ward, LR, de Sa, JDH, Rowe, B. A phage-typing scheme for Salmonella enteritidis. Epidemiol Infect 1987; 99: 291–4.CrossRefGoogle ScholarPubMed
2.O'Brien, JDPSalmonella enteritidis infection in broilers chickens. Vet Rec 1988; 122: 214.CrossRefGoogle Scholar
3.Perales, I, Audicana, A. Salmonella enteritidis and eggs. Lancet 1988; ii: 1133.CrossRefGoogle Scholar
4.Cowden, JM, Chisholm, D, O'Mahony, M, Lynch, D. Two outbreaks of Salmonella enteritidis phage type 4 infection associated with the consumption of fresh shell–egg products. Epidemiol Infect 1989; 103: 47.CrossRefGoogle ScholarPubMed
5.Kauffmann, F. The bacteriology of Enterobacteriaceae. Copenhagen: Munksgaard, 1966; vol. 1: 400.Google Scholar
6.Couturier, M, Bex, F, Bergquist, PL, Maas, W. Identification and classification of bacterial plasmids. Microbiol Rev 1988; 52: 375–95.CrossRefGoogle ScholarPubMed
7.Dalbadie–McFarland, G, Cohen, LW, Riggs, AD, Mloron, C, Itakura, K, Richards, JHOligonucleotide –directed mutagenesis as a general and powerful method for studies of protein function. Proc Natl Acad Sci USA 1982; 79: 6409–13.CrossRefGoogle ScholarPubMed
8.Pardon, P, Popoff, MY, Coynault, C, Marly, J.Miras, I. Virulence–associated plasmids of Salmonella serotype typhimurium in experimental murine infection. Ann Inst Pasteur Microbiol 1986; 137B: 47.CrossRefGoogle Scholar
9.Michiels, T, Popoff, MY, Durviaux, S, Coynault, C, Cornelis, G. A new method for the physical and genetic mapping of large plasmids: application to the localisation of the virulence determinants on the 90 kb plasmid of Salmonella typhimurium. Microb Pathogenesis 1987; 3: 109–16.CrossRefGoogle Scholar
10.Norel, F.Coynault, C, Miras, I.Hermant, D.. Popoff, MYCloning and expression of plasmid DNA sequences involved in Salmonella serotype typhimurium virulence. Molec Microbiol 1989; 3: 733–43.CrossRefGoogle ScholarPubMed
11.Datta, N.Olarte, JRR Factors in strains of Salmonella typhi and Shigella dysenteriae 1 isolated during epidemics in Mexico: classification by compatibility. Antimicrobiol Agents Chemother 1974; 5: 310–7.CrossRefGoogle ScholarPubMed
12.Colonna, B, Nicoletti, M, Visca, P, Casalino, M, Valenti, P, Maimone, F. Composite IS1 element encoding hydroxamate-mediated iron uptake in Flme plasmid from epidemic Salmonella spp. J Bact 1985; 162: 307–16.CrossRefGoogle Scholar
13.McConnell, MM, Smith, HR, Leonardopoulos, J, Anderson, ESThe value of plasmid studies in the epidemiology of infections due to drug resistant Salmonella wien. J Inf Dis 1979; 139: 178.CrossRefGoogle ScholarPubMed
14.Threlfall, EJ, Ward, LR, Rowe, B. Spread of multiresistant strains of Salmonella typhimurium phage type 204 and 193 in Britain. Br Med J 1978; 6143: 997.CrossRefGoogle Scholar
15.Chart, H, Threlfall, EJ. Rowe, B. Virulence of S. enteritidis phage type 4 is related to the possession of a 38 MDa plasmid. FEMS Microbiology Letters 1989; 58: 299.CrossRefGoogle Scholar
16.Pohl, P, Lintermans, P, Bex, F. Propriétés phénotypiques et génotypiques de quatre plasmides de virulence de Salmonella typhimurium. Ann Inst Pasteur 1987; 138: 523–8.Google ScholarPubMed
17.Threlfall, EJ, Rowe, B, Ward, LRSubdivision of Salmonella enteritidis phage by plasmid profile typing. Epidemiol Infect 1989; 102: 459–65.CrossRefGoogle ScholarPubMed