Article contents
Experimental plague infection in South African wild rodents
Published online by Cambridge University Press: 19 October 2009
Summary
Susceptibility studies were undertaken to determine the response of some South African wild rodent species to experimental plague (Yersinia pestis) infection.
A degree of plague resistance was found in three gerbil species captured in the plague enzootic region of the northern Cape Province, these being the Namaqua gerbil, Desmodillus auricularis, (LD50 1 × 106 organisms), the bushveld gerbil, Tatera leucogaster, (LD50 9·1 × 105) and the highveld gerbil, T. brantsii (LD50 4 × 102). Animals from a population of the four-striped mouse, Rhabdomys pumilio, captured in the plague area of Port Elizabeth, proved moderately resistant to experimental plague infection (LD 50 1·3 × 104) while those from another population of the same species captured in a plague-free area of the Orange Free State were extremely susceptible (LD50, 5 organisms). The response of both populations however was a heterogeneous one. Marked differences in susceptibility were also found between two populations of multimammate mice, Mastomys natalensis (2n = 32) although both originated from areas outwith the known distribution of plague in southern Africa.
The 50% infectious dose was relatively high in T. leucogaster (3·2 × 102) and D. auricularis (1·7 × 103), but was low (2–16 organisms) in the other rodent species tested.
The plague antibody response, determined by enzyme-linked immunosorbent assay (ELISA), was extremely short-lived in T. leucogaster, only 10% of inoculated animals remaining seropositive at low titres after 11 weeks. Antibodies persisted for only slightly longer in the sera of T. brantsii which were reinoculated with 2 × 103 plague organisms 6 weeks after initial challenge.
The demonstration of the existence of both susceptible and resistant populations of R. pumilio and M. natalensis indicates that these species must be considered as potential plague reservoir hosts in parts of South Africa.
The results suggest that resistance to plague infection in previously epizootic hosts in the northern Cape Province such as Tatera sp. and D. auricularis has arisen through continual selective pressure of the organism. If the findings are applicable to gerbil populations in other plague enzootic regions of South Africa it is probable that acquired plague resistance has been responsible for the absence of gerbil epizootics and consequently for the dramatic decline in human plague outbreaks in South Africa since 1950.
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 1986
References
REFERENCES
- 16
- Cited by