Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-10T09:17:16.822Z Has data issue: false hasContentIssue false

The germicidal effect of the open air in different parts of The Netherlands

Published online by Cambridge University Press:  15 May 2009

G. de Mik
Affiliation:
Medical Biological Laboratory TNO, 139 Lange Kleiweg, Rijswijk 2100, The Netherlands
Ida de Groot
Affiliation:
Medical Biological Laboratory TNO, 139 Lange Kleiweg, Rijswijk 2100, The Netherlands
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using the microthread technique the survival of Escherichia coli MRE 162 in open air was measured in different parts of The Netherlands.

The presence of bactericidal compounds (open air factor = OAF) could be demonstrated on several days and quantitated in relative units of OAF concentration.

In the absence of ozone the OAF concentration was always low. In the presence of ozone the OAF concentration was dependent on wind direction. At the selected microthread exposure sites air from areas with high traffic intensity contributed more to OAF production than air from industrial areas. OAF production is probably related to the nature of hydrocarbons in the air.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1977

References

REFERENCES

Benbough, J. E. & Hood, A. M. (1971). Viricidal activity of open air. Journal of Hygiene 69, 619.Google ScholarPubMed
Cox, C. S., Hood, A. M. & Baxter, J. (1973). Method for comparing concentrations of the open-air factor. Applied Microbiology 26, 640.CrossRefGoogle ScholarPubMed
Dark, F. A. & Nash, T. (1970). Comparative toxicity of various ozonized olefins to bacteria suspended in air. Journal of Hygiene 68, 245.CrossRefGoogle ScholarPubMed
Druett, H. A. (1969). A mobile form of the Henderson apparatus. Journal of Hygiene 67, 437.CrossRefGoogle ScholarPubMed
Druett, H. A. & May, K. R. (1968). Unstable germicidal pollutant in rural air. Nature, London 220, 395.CrossRefGoogle ScholarPubMed
Druett, H. A. & May, K. R. (1969). The open air factor. New Scientist 41, 579.Google Scholar
Druett, H. A. & Packman, L. P. (1968). Sensitive microbiological detector for air pollution. Nature, London 218, 699.CrossRefGoogle ScholarPubMed
Guicherit, R., Hoogeveen, A. & Lindqvist, F. (1975). Die Herkunft von C1–C5-Kohlenwasserstoffen im Haag und Delft. Staub-Reinhalt. Luft 35, 89.Google Scholar
Guicherit, R., Jeltes, & Lindqvist, F. (1972). Determination of the ozone concentration in outdoor air near Delft, The Netherlands. Environmental Pollution 3, 91.Google Scholar
Hald, A. (1952). Statistical Theory with Engineering Applications, p. 535. New York: John Wiley & Sons.Google Scholar
Harper, G. J. (1973). The influence of urban and rural air on the survival of microorganisms exposed on microthreads. In IVth International Symposium on Aerobiology(ed. Hers, F. Ph. and Winkler, K. C.), p. 151. Utrecht: Oosthoek.Google Scholar
Hood, A. M. (1974). Open-air factors in enclosed systems. Journal of Hygiene 72, 53.CrossRefGoogle ScholarPubMed
May, K. R. (1973). The Collison nebulizer; description, performance and applications. Aerosol Science 4, 235.CrossRefGoogle Scholar
May, K. R. & Druett, H. A. (1968). A microthread technique for studying the viability of microbes in a simulated airborne state. Journal of Microbiology 51, 353.Google Scholar
May, K. R., Druett, H. A. & Packman, L. P. (1969). Toxicity of open air to a variety of microorganisms. Nature, London 221, 1146.CrossRefGoogle ScholarPubMed