Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T08:25:21.986Z Has data issue: false hasContentIssue false

Infectivity of influenza virus aerosols

Published online by Cambridge University Press:  15 May 2009

A. M. Hood
Affiliation:
Microbiological Research Establishment, Porton Down, Salisbury, Wilts
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The PR8 strain of influenza virus can remain viable in ageing aerosols for considerable periods (Harper, 1961). However, viability of micro-organisms determined by their growth in vitro may not indicate their ability to infect animals via the respiratory route (Schlamm, 1960; Hood, 1961). If influenza is normally transmitted via this route it is epidemiologically important to establish whether any correlation exists between viability as measured by in vitro or in ovo methods and respiratory infectivity for a susceptible animal host. Previous reports on respiratory infectivity of aged influenza virus aerosols by Edward, Elford & Laidlaw (1943), Loosli, Lemon, Robertson & Appel (1943a) and Loosli, Robertson & Puck (1943b) lack such a comparison.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1963

References

REFERENCES

Edward, D. G. ff. Elford, W. J. & Laidlaw, P. P. (1943). Studies on air-borne virus infections. 1. Experimental technique and preliminary observations on influenza and infectious ectromelia. J. Hyg., Camb., 43 1.CrossRefGoogle ScholarPubMed
Fazekas de St Groth, S. & White, D. O. (1958 a). An improved assay for the infectivity of influenza viruses. J. Hyg., Camb., 56, 151.CrossRefGoogle ScholarPubMed
Fazekas de St Groth, S. & White, D. O. (1958 b). Comparison of the infectivity of influenza viruses in two host systems: the allantois of intact eggs and surviving allantois-on-shell. J. Hyg., Camb., 56, 535.Google ScholarPubMed
Finter, N. B. & Armitage, P. (1957). The membrane piece technique for in vitro infectivity titrations of influenza virus. J. Hyg., Camb., 55, 434.CrossRefGoogle ScholarPubMed
Goldberg, L. J., Watkins, H. M. S., Boerke, E. E. & Chatigny, M. A. (1958). The use of a rotating drum for the study of aerosols over extended periods of time. Amer. J. Hyg. 68, 85.Google Scholar
Harper, G. J. (1961). Airborne micro-organisms: Survival tests with four viruses. J. Hyg., Camb., 59, 479.Google ScholarPubMed
Harper, G. J. & Hood, A. M. (1962). Lung retention in mice exposed to airborne micro-organisms. Nature, Lond., 196, 598.CrossRefGoogle ScholarPubMed
Harper, G. J., Hood, A. M. & Morton, J. D. (1958). Airborne micro-organisms: A technique for studying their survival. J. Hyg., Camb., 56, 364.CrossRefGoogle ScholarPubMed
Hood, A. M. (1961). Infectivity of Pasteurella tularensis clouds. J. Hyg., Camb., 59, 497.Google ScholarPubMed
Loosli, C. G., Lemon, H. M., Robertson, O. H. & Appel, E. (1943 a). Experimental air-borne influenza infection. 1. Influence of humidity on survival of virus in air. Proc. Soc. exp. Biol., N.Y., 53, 205.CrossRefGoogle Scholar
Loosli, C. G., Robertson, O. H. & Puck, T. T. (1943 b). The production of experimental influenza in mice by inhalation of atmospheres containing influenza virus dispersed as fine droplets. J. infect. Dis. 72, 142.CrossRefGoogle Scholar
Schlamm, N. A. (1960). Detection of viability in aged or injured Pasteurella tularensis. J. Bact. 80, 818.CrossRefGoogle ScholarPubMed