Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-05T22:19:18.407Z Has data issue: false hasContentIssue false

The Influence of Static Effort on the Respiration and on the Respiratory Exchange

Published online by Cambridge University Press:  15 May 2009

T. Bedford
Affiliation:
Investigators of the Industrial Health Research Board.
H. M. Vernon
Affiliation:
Investigators of the Industrial Health Research Board.
C. G. Warner
Affiliation:
Investigators of the Industrial Health Research Board.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

(1) The energy cost of static effort.

From previous work it appears that the metabolic cost of maintaining a given tension varies directly as the load, provided no new muscles are brought into play as the result of fatigue or local strain. There is conflict of opinion as to the relation of cost to tension; some workers find a linear relation, while others find a non-linear one.

In the present observations contractions, which were virtually isometric, were made against a powerful spring, while in a standing position.

With constant tension the oxygen cost per contraction varied directly as the duration of the contraction. With constant time and increasing tension the oxygen cost increased more rapidly than the tension.

The duration of contraction varied from ½ to 30 sec., and the tension from 30 to 165 Ib. Over the whole range the oxygen cost per contraction is adequately described by the equation

Q = T1·37 (0·0117 + 0·01090t),

where Q is the oxygen cost per contraction, T is the tension, and t is the duration of contraction.

(2) The effect of static effort on the respiration.

As a measure of hyper-ventilation the ratio of ventilation to oxygen intake is used. It is shown that in dynamic work this ratio falls below the resting value, whereas in static effort of whatever severity the ratio increases considerably above the resting value if the effort is sufficiently prolonged. The rise in the ventilation ratio runs parallel with the feelings of strain which are associated with static effort. Pain causes such a rise in the ratio, and the rise which occurs in static effort is ascribed to the influence of painful sensations of strain.

Observations were made in which the posture alternated between sitting and standing every 40 sec. The change of posture altered the distribution of the strain, and thus the subjective sensations were not so marked as in the experiments with posture unchanged. In consequence of the postural change the ventilation ratio did not rise sensibly above the resting value, and the maximum strength of pull was increased by 6–16 per cent.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1933

References

Anthony, A. J. (1930). Untersuchungen über Lungenvolumina und Lungenventilation. Deutsches Arch. f. klin. Med. 167, 129.Google Scholar
Atzlrr, E. (1927). Körper und Arbeit. Leipzig: Georg Thieme.Google Scholar
Atzlrr, E. (1928). Probleme und Aufgaben der Arbeitsphysiologie. Ergebn. Physiol. 27, 709.CrossRefGoogle Scholar
Atzler, E. and Herbst, R. (1928). Die Ökonomie des Lasttragens über eine ebene Strecke. Arbeitsphysiol. 1, 54.Google Scholar
Baader, E. and Lehmann, G. (1928). Über die Ökonomie der Maurerarbeit. Arbeitsphysiol. 1, 41.Google Scholar
Bedale, E. M. (1924). Comparison of the energy expenditure of a woman carrying loads in eight different positions. Ind. Fat. Res. Bd. Rep. No. 29.Google Scholar
Benedict, F. G. and Cathcart, E. P. (1913). Muscular work. Carnegie Inst. of Washington, Publ. No. 187.Google Scholar
Bock, A. V. and Dill, D. B. (1931). In Bainbridge's The Physiology of Muscular Exercise. London: Longmans, Green and Co.Google Scholar
Bornstein, A. and Poher, E. (1903). Ueber den respiratorischen Stoffwechsel bei statischer Arbeit. Arch. ges. Physiol. 95, 146.CrossRefGoogle Scholar
Cathcart, E. P. (1923). The efficiency of man and the factors which influence it. Brit. Assoc. Reports for 1922, p. 164.Google Scholar
Cathcart, E. P., Bedale, E. M. and Mccallum, G. (1923). Studies in muscle activity. I. The static effort. J. Physiol. 57, 161.CrossRefGoogle ScholarPubMed
Chauveau, A. and Tissot, J. (1896). L'énergie dépensée par le muscle en contraction statique pour le soutien d'une charge d'après les échanges respiratoires. C.R. Acad. Sci. Paris, 123, 1236.Google Scholar
Douglas, C. G. and Haldane, J. S. (1912). The capacity of the air passages under varying physiological conditions. J. Physiol. 45, 235.CrossRefGoogle ScholarPubMed
Dusser De Barenne, J. G. and Burger, G. C. E. (1924). A method for the graphic registration of oxygen consumption and carbon dioxide output; the respiratory exchange in decerebrate rigidity. J. Physiol. 59, 17.CrossRefGoogle Scholar
Dusser De Barenne, J. G. and Burger, G. C. E. (1928). Untersuchungen ¨ber den Gaswechsel des Menschen bei statischer Arbeit. Pflüger's Arch. 218, 239.CrossRefGoogle Scholar
v. Frey, M. and Meyer, O. B. (1918). Versuche über die Wahrnehmung geführter Bewe-gungen. Z. Biol. 68, 301.Google Scholar
Frumerie, K. (1913). Über das Verhältnis des Ermüdungsgefühls zur CO2-Abgabe bei statischer Muskelarbeit. Skand. Arch. Physiol. 30, 409.CrossRefGoogle Scholar
Furusawa, K., Hill, A. V. and Parkinson, J. L. (1927). The energy used in “sprint” running. Proc. Roy. Soc. B, 102, 43.Google Scholar
Garry, R. C. and Wishart, G. M. (1931). On the existence of a most efficient speed in bicycle pedalling, and the problem of determining human muscular efficiency. J. Physiol. 72, 425.Google Scholar
Greenwood, M. and Newbold, E. M. (1923). On the estimation of metabolism from determinations of carbon dioxide production and on the estimation of external work from the respiratory metabolism. J. Hyg. 21, 440.Google Scholar
Hartree, W. and Hill, A. V. (1921). Regulation of the supply of energy in muscular contraction. J. Physiol. 55, 133.CrossRefGoogle ScholarPubMed
Henderson, Y. (1909). Acapnia and shock. IV. Fatal apnoea after excessive respiration. Amer. J. Physiol. 25, 310.CrossRefGoogle Scholar
Hill, A. V. and Lupton, H. (1923). Muscular exercise, lactic acid, and the supply and utilisation of oxygen. Quart. J. Med. 16, 135.Google Scholar
Jervell, O. (1932). Die Milchsäurebildung bei statischer Muskelarbeit und bei lokaler Asphyxie. Arbeitsphysiol. 5, 150.Google Scholar
Johannson, J. E. (1901). Untersuchungen über die Kohlensäurabgabe bei Muskelthätigkeit. Skand. Arch. Physiol. 11, 273.Google Scholar
Johansson, J. E. and Koraen, G. (1902). Untersuchungen über die Kohlensäurabgabe bei statischer und negativer Muskelthätigkeit. Skand. Arch. Physiol. 13, 229.CrossRefGoogle Scholar
Johansson, J. E. and Koraen, G. (1903). Die Einwirkung verschiedener Variabelen auf die Kohlensäurabgabe bei positiver Muskelthätigkeit. Skand. Arch. Physiol. 14, 60.CrossRefGoogle Scholar
Kektsoheew, K. and Braitzewa, L. (1930). Material zur physiologischen Untersuchung der statischen Arbeit. Arbeitsphysiol. 2, 526.Google Scholar
Knipping, H. W. and Moncrieff, A. (1932). The ventilation equivalent for oxygen. Quart. J. Med. n.s. 1, 17.Google Scholar
Kommerell, B. (1929). Die Schaufelarbeit in gebückter Haltung. Arbeitsphysiol. 1, 278.Google Scholar
Lehmann, G. (1927). Zur Frage der Sperrung des Skelettmuskels. Pflüger's Arch. 216, 353.CrossRefGoogle Scholar
Lindhard, J. (1920). Untersuchungen über statische Muskelarbeit. Skand. Arch. Physiol. 40, 145 and 196.Google Scholar
Loewy, A. (1891). Die Wirkung ermüdender Muskelarbeit auf den respiratorischen Stoff-wechsel. Pfüger's Arch. 49, 405.Google Scholar
Lupton, H. (1923). An analysis of the effects of speed on the mechanical efficiency of human muscular movement. J. Physiol. 57, 337.CrossRefGoogle ScholarPubMed
Marschak, M. E. (1930). Hauttemperatur bei dynamischer und statischer Arbeit. Arbeitsphysiol. 3, 168.Google Scholar
Marschak, M. (1931). Eine Untersuchung über den Gaswechsel und über die Milchsäure und Alkalireserve im Blut bei statischer Arbeit. Arbeitsphysiol. 4, 1.Google Scholar
Meyer, A. L. (1914). Hyperpnoea as a result of pain and ether in man. J. Physiol. 48, 47.Google Scholar
Müller, E. A. (1930). Der Einfluss der Kontraktionsgeschwindigkeit auf den Energiever-brauch bei einer statischen Arbeit. Arbeitsphysiol. 3, 298.Google Scholar
Passauer, (1925). Uber den Einfluss statischer Arbeit auf Ermudung und Stoffwechsel. Z. Hyg. Infektkr. 104, 33.Google Scholar
Riabusohinsky, N. P. (1928). Besteht eine Proportionalität zwischen der Arbeitsleistung und der Milchsäure-Phosphor- und Zuckermenge im Blute? Biochem. Z. 193, 161.Google Scholar
Riabusohinsky, N. P. (1931). Zur Frage über Beziehung zwischen der Milchsäure im Blut und der Ermüdung. Pflüger's Arch. 226, 79.Google Scholar
Roaf, H. E. (1912). The influence of muscular rigidity on the carbon dioxide output of decerebrate cats. Quart. J. Exp. Physiol. 5, 31.CrossRefGoogle Scholar
Roaf, H. E. (1913). The influence of muscular rigidity on the oxygen intake of decerebrate cats. Quart. J. Exp. Physiol. 6, 393.CrossRefGoogle Scholar
Simonson, E. (1926). Zur Physiologic des Energieumsatzes beim Menschen. I. Beiträge zur Physiologic der Arbeit, der Restitution und der Atmung. Pflüger's Arch. 214, 380.CrossRefGoogle Scholar
Simonson, E. (1927). Zur Physiologic des Energieumsatzes beim Menschen. III. Weitere Beitrüge zur Physiologic der Erholung bei körperlicher Arbeit. Pflüger's Arch. 215, 716.Google Scholar
Simonson, E. (1929). Rationalisierung industrieller Arbeit nach physiologischen Gesichtspunkten. II. Über die Erholung wahrend und nach beendeter Arbeit und das Verhalten des calorischen Ventilationsquotienten und des respiratorischen Quotienten beim Formen und seinen Elementen. Arbeitsphysiol. 1, 540.Google Scholar
Vernon, H. M. (1922). The influence of rest pauses and changes of posture on the capacity for muscular work. J. Physiol. 56, Proc. xlvii.Google Scholar
Vernon, H. M. (1924). The influence of rest pauses and changes of posture on the capacity for muscular work. Ind. Fat. Res. Bd. Rep. No. 29.Google Scholar
Verzár, F. (1912). The gaseous metabolism of striated muscle in warm-blooded animals. J. Physiol. 44, 243.CrossRefGoogle ScholarPubMed
Wachholder, K. (1928). Willkürliche Haltung und Bewegung insbesondere im Lichte elektrophysiologischer Untersuchungen. Ergebn. Physiol. 26, 568.Google Scholar
Weatherhead, E. L. (1932). The metabolism of postural and phasic contractions of the quadriceps of the cat. J. Physiol. 74, 163.Google Scholar