Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-10T13:23:57.407Z Has data issue: false hasContentIssue false

Mechanisms of inactivation of bacteriophage φX174 and its DNA in aerosols by ozone and ozonized cyclohexene

Published online by Cambridge University Press:  15 May 2009

G. de Mik
Affiliation:
Medical Biological Laboratory TNO, 139 Lange Kleiweg, Rijswijk 2100, The Netherlands
Ida de Groot
Affiliation:
Medical Biological Laboratory TNO, 139 Lange Kleiweg, Rijswijk 2100, The Netherlands
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The mechanisms of inactivation of aerosolized bacteriophage øX174 in atmospheres containing ozone, cyclohexene, or ozonized cyclohexene were studied by using 32P-labelled phage. The inactivation of the aerosolized phage in clean air or in air containing cyclohexene is due to damage of the protein coat since the deoxyribonucleic acid (DNA) extracted from the inactivated phage retains its biological activity. Inactivation of the phage in air containing ozone is mainly due to protein damage whereas inactivation in air containing ozonized cyclohexene is due both to protein and DNA damage. Sucrose gradient analysis shows that aerosolized inactivated øX174 releases unbroken DNA. In contrast, the DNA from phage øX174 inactivated by ozonized cyclohexene is broken.

The inactivation of aerosolized phage øX174-DNA was studied in the same atmospheres using 32P-labelled DNA. øX174-DNA aerosolized in clean air or air containing cyclohexene at 75% r.h. is inactivated by a factor of 2 in 30 min. The inactivated DNA is broken. Ozone as well as ozonized cyclohexene inactivates DNA very fast causing breaks in the molecule. This is in contrast with the intact bacteriophage in which ozone does not produce breaks in the DNA.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1977

References

REFERENCES

Adams, M. H. (1959). Enumeration of bacteriophage particles. The Bacteriophages, chap. III, p. 29. New York: Interscience.CrossRefGoogle Scholar
Arnold, W. N. (1959). The longevity of the phytotoxicant produced from gaseous ozoneolefin reactions. International Journal of Air Pollution 2, 167.Google ScholarPubMed
Blok, J., Luthjens, L. H. & Roos, A. L. M. (1967). The radiosensitivity of bacteriophage DNA in aqueous solution. Radiation Research 30, 468.CrossRefGoogle ScholarPubMed
Christensen, E. & Giese, A. C. (1954). Changes in absorption spectra of nucleic acids and their derivatives following exposure to ozone and ultra violet radiations. Archives of Biochemistry and Biophysics 51, 208.CrossRefGoogle Scholar
Dark, F. A. & Nash, T. (1970). Comparative toxicity of various ozonized olefins to bacteria suspended in air. Journal of Hygiene 68, 245.CrossRefGoogle ScholarPubMed
Druett, H. A. & May, K. R. (1968). Unstable germicidal pollutant in rural air. Nature, London 220, 395.CrossRefGoogle ScholarPubMed
Dubovi, E. J. (1971). Biological activity of the nucleic acids extracted from two aerosolized bacterial viruses. Applied Microbiology 21, 761.CrossRefGoogle ScholarPubMed
Guthrie, G. D. & Sinsheimer, R. L. (1963). Observations on the infection of bacterial protoplasts with the deoxyribonucleic acid of bacteriophage øX174. Biochimica et biophysica acta 72, 290.CrossRefGoogle Scholar
Haagen-Smit, A. J., Darley, E. F., Zaitlin, M., Hull, H., & Noble, W. (1952). Investigations on injury to plants from air pollution in the Los Angeles area. Plant Physiology 27, 18.CrossRefGoogle ScholarPubMed
de Jong, J. C. & Winkler, K. C. (1968). The inactivation of poliovirus in aerosols. Journal of Hygiene 66, 557.Google ScholarPubMed
de Jong, J. C., Harmsen, M., Trouwborst, T. & Winkler, K. C. (1974). Inactivation of encephalomyocarditis virus in aerosols: fate of virus protein and ribonucleic acid. Applied Microbiology 27, 59.CrossRefGoogle ScholarPubMed
May, K. R. (1966). Multistage liquid impinger. Bacteriological Reviews 30, 559.CrossRefGoogle ScholarPubMed
Menzel, D. B. (1971). Oxidation of biologically active reducing substances by ozone. Archives of Environmental Health 23, 149.CrossRefGoogle ScholarPubMed
de Mik, G. & de Groot, Y. (1977). The germicidal effect of the open air in different parts of The Netherlands. Journal of Hygiene 78, 175.CrossRefGoogle ScholarPubMed
de Mik, G., de Groot, Y. & Gerbrandy, J. L. F. (1977). Survival of aerosolized bacteriophage øX174 in air containing ozone-olefin mixtures. Journal of Hygiene 78, 189.CrossRefGoogle Scholar
Mudd, J. B., Leavitt, R., Ongun, A. & McManus, T. T. (1969). Reaction of ozone with aminoacids and proteins. Atmospheric Environment 3, 669.CrossRefGoogle ScholarPubMed
Prat, R., Nofre, Cl. & Cier, A. (1969). Effets de l'hypochlorite de sodium, de l'ozone et des radiations ionisantes sur les constituants pyrimidiques de Escherichia coli. Annales de l'institut Pasteur 114, 595.Google Scholar
Sinsheimer, R. L. (1959). Purification and properties of bacteriophage øX174. Journal of Molecular Biology 1, 37.CrossRefGoogle Scholar
Trouwborst, T. (1971). Inactivation in aerosols of microorganisms and macromolecules. Thesis, University of Utrecht, with a summary in English.Google Scholar
Trouwborst, T. & de Jong, J. C. (1972). Mechanisms of the inactivation of the bacteriophage T1 in aerosols. Applied Microbiology 23, 938.CrossRefGoogle ScholarPubMed
Van der Schans, G. P. & Aten, J. B. T. (1969). Determination of molecular weight distributions of DNA by means of sedimentation in a sucrose gradient. Analytical Biochemistry 32, 14.CrossRefGoogle Scholar
Zahler, S. A. (1958). Some biological properties of bacteriophage S13 and øX174. Journal of Bacteriology 75, 310.CrossRefGoogle Scholar