Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T05:42:42.718Z Has data issue: false hasContentIssue false

The Minimum Temperatures of Growth of Some Bacteria

Published online by Cambridge University Press:  15 May 2009

R. B. Haines
Affiliation:
From the Low Temperature Research Station, Cambridge
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The commonly occurring bacteria may be divided into four groups on the basis of their behaviour at various temperatures. These are (i) the Staphylococci, not growing below 10° C, (ii) most strains of B. coli, B. proteus and Micrococci ceasing growth in the range 5−0° C, (iii) some strains of B. proteus etc. capable of growth at 0° C, (iv) many strains of Achromobacter, Pseudo monas, and various yeasts growing rapidly at 0° C. (sometimes in 5 days), and down to about −5° C. on unfrozen media.

2. Bacterial growth on frozen media has not been observed below −3° C.

The author is indebted to Dr G. S. Graham-Smith, F.R.S., who read the manuscript, to Mr W. A. Bmpey for the supply of cultures, and to Mr J. Barlow for assistance in the experimental work.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1934

References

REFERENCES

Barber, J. (1908). The multiplication of B. coli at different temperatures. J. Inf. Dis. 5, 379400.CrossRefGoogle Scholar
Bedford, R. H. (1933). Marine bacteria of the Northern Pacific Ocean. The temperature range of growth. Contr. Canad. Biol. Fish. 8, 433–8.Google Scholar
Empey, W. A. and Vickery, J. R. (1933). The use of carbon dioxide in the storage of chilled beef. J. Council Sci. Industr. Res. Australia, 6, 233–43.Google Scholar
Forster, (1887). Ueber einige Eigenschaften leuchtender Bakterien. Centr. Bakt. 2, 337–40.Google Scholar
Graham-Smith, G. S. (1920). The behaviour of bacteria in fluid cultures as indicated by daily estimates of the numbers of living organisms. J. Hyg. 19, 133204.CrossRefGoogle ScholarPubMed
Griffiths, E., Vickery, J. R. and Holmes, N. E. (1932). The freezing, storage and transport of New Zealand lamb. Food Investigation Board Special Report, No. 41, p. 159. H.M. Stationery Office.Google Scholar
Haines, R. B. (1931). The growth of micro-organisms on chilled and frozen meat. J. Soc. Chem. Industr. 50, 223–7.Google Scholar
Haines, R. B. (1932). The influence of temperature on the growth of saprophytic Actinomyces. J. Exp. Biol. 9, 4560.CrossRefGoogle Scholar
Haines, R. B. (1933 a). The bacterial flora developing on stored lean meat, especially with regard to “slimy” meat. J. Hyg. 33, 175–82.CrossRefGoogle ScholarPubMed
Haines, R. B. (1933 b). Observations on the bacterial flora of some slaughterhouses. J. Hyg. 33, 165–74.CrossRefGoogle ScholarPubMed
Karaffa-Korbutt, K. v. (1912). Zur Frage des Einflusses des Kochsalzes auf die Lebenstätigkeit der Mikroorganismen. Zeitschr. f. Hyg. 71, 161–71.CrossRefGoogle Scholar
Moran, T. (1930). The frozen state in mammalian muscle. Proc. Roy. Soc. B, 107, 182–7.Google Scholar
Müller, M. (1903). Ueber das Wachstum und die Lebenstätigkeit von Bakterien, sowie den Ablauf fermentativer Prozesse bei niederer Temperatur unter spezieller Berück sichtigung des Fleisches als Nahrungsmittel. Arch. f. Hyg. 47, 127–93.Google Scholar
Rubentschik, L. (1925). Ueber die Lebenstätigkeit der Urobakterien bei einer Temperatur unter 0° C. Centr. Bakt. Abt. 2, 64, 166–74.Google Scholar
Tanner, F. W. and Wallace, G. I. (1933). Microbiology of frozen foods. Fruit Products J. 13, 52–4 and 109–13.Google Scholar