Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T05:11:57.651Z Has data issue: false hasContentIssue false

Plasmid characterization of drug-resistant Shigella dysenteriae 1 from an epidemic in Central Africa

Published online by Cambridge University Press:  19 October 2009

J. A. Frost
Affiliation:
WHO Collaborating Centre for Phage Typing and Resistance of Enterobacteria, Division of Enteric Pathogens, Central Public Health Laboratory, Colindale Avenue, London NW9 5HT
G. A. Willshaw
Affiliation:
WHO Collaborating Centre for Phage Typing and Resistance of Enterobacteria, Division of Enteric Pathogens, Central Public Health Laboratory, Colindale Avenue, London NW9 5HT
E. A. Barclay
Affiliation:
WHO Collaborating Centre for Phage Typing and Resistance of Enterobacteria, Division of Enteric Pathogens, Central Public Health Laboratory, Colindale Avenue, London NW9 5HT
B. Rowe
Affiliation:
WHO Collaborating Centre for Phage Typing and Resistance of Enterobacteria, Division of Enteric Pathogens, Central Public Health Laboratory, Colindale Avenue, London NW9 5HT
P. Lemmens
Affiliation:
Academish Ziekenhuis Sint-Raphael, 3000, Leuven, Kapucijnenvoer 33, Belgium
J. Vandepitte
Affiliation:
Academish Ziekenhuis Sint-Raphael, 3000, Leuven, Kapucijnenvoer 33, Belgium
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A widespread epidemic of severe dysentery in Zaire and neighbouring Central African countries was caused by a multiply drug-resistant strain of Shigella dysenteriae 1. Early isolations were resistant to ampicillin, chloramphenicol, streptomycin, sulphonamides and tetracyclines (R-type = ACSSuT). Later in the epidemic strains resistant to trimethoprim (Tm) became prevalent and a few strains resistant to kanamycin (K) or nalidixic acid were also isolated. All resistances except nalidixic acid were encoded by plasmids of incompatibility groups X (ACT) or I1 (ACSSuTTm) and the epidemic strain also carried an SSu plasmid and a number of cryptic plasmids. The Inc X plasmid from this epidemic is the same as that in Sh. dysenteriae 1 strains isolated in Somalia in 1976 whereas the epidemic strains from the Shiga outbreaks in Central America, 1969 to 1971, and Sri Lanka, 1979, carried plasmids of group B. This epidemic demonstrates that when a multiresistant strain includes resistance to trimethoprim, nalidixic acid is a suitable alternative therapeutic agent.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

References

REFERENCES

Anderson, E. S., Kelemen, M. V., Jones, C. M. & Pitton, J.-S. (1968). Study of the association of resistance to two drugs in a transferable determinant in Salmonella typhimurium. Genetica Research 11, 119124.CrossRefGoogle Scholar
Anderson, E. S. & Lewis, M. J. (1965). Drug resistance and its transfer in Salmonella typhimurium. Nature 206, 579583.CrossRefGoogle ScholarPubMed
Anderson, E. S. & Threlfall, E. J. (1974). The characterisation of plasmids in the Enterobacteria. Journal of Hygiene 72, 471487.CrossRefGoogle ScholarPubMed
Anderson, E. S., Threlfall, E. J., Carr, J. M., McConnell, M. M. & Smith, H. R. (1977). Clonal distribution of resistance plasmid-carrying Salmonella typhimurium mainly in the Middle East. Journal of Hygiene 79, 425448.CrossRefGoogle ScholarPubMed
Barth, P. T. & Grinter, N. J. (1974). Comparison of the DNA molecular weights and homologies of plasmids conferring linked resistance to streptomycin and sulphonamides. Journal of Bacteriology 120, 618630.CrossRefGoogle Scholar
Birnboim, H. C. & Doly, J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research 7, 15131523.CrossRefGoogle ScholarPubMed
Crosa, J. H., Olarte, J., Mata, L. J., Luttrop, L. K. & Penaranda, M. E. (1977). Characterisation of an R-plasmid associated with ampicillin resistance in Shigella dysenteriae type 1 isolated from epidemics. Antimicrobial Agents and Chemotherapy 11, 553558.CrossRefGoogle ScholarPubMed
Dagert, M. & Ehrlich, S. D. (1979). Prolonged incubation in calcium chloride improves the competence of Escherichia coli cells. Gene 6, 23.CrossRefGoogle ScholarPubMed
Frost, J. A., Rowe, B., Vandepitte, J. & Threlfall, E. J. (1981). Plasmid characterisation in the investigation of an epidemic caused by multiply resistant Shigella dysenteriae type 1 in Central Africa. Lancet, ii, 10741076.CrossRefGoogle Scholar
Frost, J. A., Rowe, B. & Vandepitte, J. (1982). Acquisition of trimethoprim resistance in epidemic strain of Shigella dysenteriae type 1 from Zaire. Lancet i, 963.CrossRefGoogle Scholar
Frost, J. A. & Rowe, B. (1983). Plasmid-determined antibiotic resistance in Shigella flexneri isolated in England and Wales between 1974 and 1978. Journal of Hygiene 90, 2732.CrossRefGoogle ScholarPubMed
Garrod, L. P., Lambert, H. P. & O'Grady, F. (1981). Antibiotics and Chemotherapy. 5th ed.Edinburgh: Churchill Livingstone.Google Scholar
Grindley, N. D. F., Grindley, J. N. & Anderson, E. S. (1972). R factor compatibility groups. Molecular and General Genetics 119, 287297.CrossRefGoogle ScholarPubMed
Grinter, N. J. & Barth, P. T. (1976). Characterisation of SmSu plasmids by restriction endonuclease cleavage and compatibility testing. Journal of Bacteriology 128, 94400.CrossRefGoogle ScholarPubMed
Jacob, A. E., Shapiro, J. A., Yamamoto, L., Smith, D. I., Cohen, S. N. & Berg, D. (1977). Appendix B Bacterial Plasmids. In DNA Insertion Elements, Plasmids and Episomes (ed. Bukhari, A. I., Shapiro, J. A. and Adhya, S. L.), pp. 607670. Cold Spring Harbor, N.Y.: The Laboratory.Google Scholar
Kopecko, D. J., Washington, O. & Formal, S. B. (1980). Genetic and physical evidence for plasmid control of Shigella sonnei I cell surface antigen. Infection and Immunity 29, 207214.CrossRefGoogle ScholarPubMed
Kopecko, D. J., Sansonetti, P. J., Baron, L. S. & Formal, S. B. (1981). Invasive bacterial pathogens of the intestine: Shigella virulence plasmids and potential vaccine approaches. In Molecular Biology; Pathogenicity and Ecology of Bacterial Plasmids (ed. Levy, S. B., Clowes, R. C. and Koenig, E. L.), pp. 111121. New York: Plenum Press.CrossRefGoogle Scholar
Macaden, R., Gokul, B. N., Pereira, P. & Bhat, P. (1980). Bacillary dysentery due to multidrug-resistant Shigella dysenteriae type 1. Indian Journal of Medical Research 71, 178185.Google Scholar
Malengreau, M., Molima-Kaba, M., Gillieaux, M., De Feyter, Kyele-Duibone & Mukolo-Ndjolo, . (1983). Outbreak of shigella dysentery in Eastern Zaire, 1980–1982. Annales de la Société Beige de Médicinè Tropicale 63, 5967.Google ScholarPubMed
Mata, L. J., Gangarosa, E. J., Caceres, A., Perera, D. R. & Mejicanos, M. L. (1970). Epidemic Shiga bacillus dysentery in Central America. I. Etiologic investigations in Guatemala, 1969. Journal of Infectious Diseases 122, 170180.CrossRefGoogle ScholarPubMed
McCormack, J. G. (1983). Nalidixic acid for shigellosis. Lancet ii, 1091.CrossRefGoogle Scholar
Mero, E. (1976). Resistance to antibiotics of Shigella strains isolated in Somalia. WHO Bulletin 54, 473474.Google ScholarPubMed
Olarte, J., Filroy, L. & Galindo, E. (1976). Resistance of Shigella dysenteriae type 1 to ampicillin and other antimicrobial agents: strains isolated during a dysentery outbreak in a hospital in Mexico City. Journal of Infectious Diseases 133, 572575.CrossRefGoogle Scholar
Pal, S. C. (1984). Epidemic bacillary dysentery in West Bengal, India 1984. Lancet i, 1462.CrossRefGoogle Scholar
Panhotra, B. R. & Desai, Bhavana (1983). Resistant Shigella dysenteriae. Lancet ii, 1420.CrossRefGoogle Scholar
Silva, R. M., Toledo, M. R. F. & Trabulsi, L. R. (1982). Plasmid-mediated virulence in Shigella species. Journal of Infectious Diseases 146, 99.CrossRefGoogle Scholar
Smith, H. R., Humphreys, G. O. & Anderson, E. S. (1974). Genetic and molecular characterisation of some non-transferring plasmids. Molecular and General Genetics 129, 229242.CrossRefGoogle ScholarPubMed
van Treeck, U., Schmidt, F. & Wiedemann, B. (1981). Molecular nature of a streptomycin and sulphonamide resistance plasmid (pBPl) prevalent in clinical Escherichia coli strains and integration of an ampicillin resistance transposon (TnA). Antimicrobial Agents and Chemotherapy 19, 371380.CrossRefGoogle Scholar
Watanabe, H. & Timmis, K. (1984). A small plasmid in Shigella dysenteriae 1 specifies one or more functions essential for 0 antigen production and bacterial virulence. Infection and Immunity 43, 391396.CrossRefGoogle ScholarPubMed
Willshaw, G. A., Smith, H. R. & Anderson, E. S. (1979). Application of agarose gel electrophoresis to the characterisation of plasmid DNA in drug-resistant enterobacteria. Journal of General Microbiology 114, 1525.CrossRefGoogle Scholar
Willshaw, G. A., Barclay, E. A., Smith, H. R., McConnell, M. M. & Rowe, B. (1980). Molecular comparison of plasmids encoding heat-labile enterotoxin isolated from Escherichia coli strains of human origin. Journal of Bacteriology 143, 168175.CrossRefGoogle ScholarPubMed
Zaman, K., Yunis, M. D., Baqui, A. H., Hossain, K. M. B. & Khan, M. U. (1983). Cotrimoxazole-resistant Shigella dysenteriae type 1 outbreak in a family in rural Bangladesh. Lacet ii, 796797.Google Scholar