Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T06:18:38.033Z Has data issue: false hasContentIssue false

Precipitation Phenomena and the Wassermann Reaction

Published online by Cambridge University Press:  15 May 2009

C. G. L. Wolf
Affiliation:
(From the John Bonnett Memorial Laboratory, Addenbrooke's Hospital, Cambridge, and the Department of Physical Chemistry, Cambridge University.)
E. K. Rideal
Affiliation:
(From the John Bonnett Memorial Laboratory, Addenbrooke's Hospital, Cambridge, and the Department of Physical Chemistry, Cambridge University.)
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. “Antigens” of varying sensitivity may be prepared by coating a dispersion of gum benzoin with saponin.

2. Using suitable dispersions so prepared a zone of precipitation is observed which is more extended for specific than for normal sera. Differentiation is more pronounced as the region of the isoelectric point of the globulin is approached.

3. Precipitation is effected by the ions of salts present in the solution discharging the negative antigen suspension which has been sensitised by the protein of the serum.

4. The mechanism of sensitisation is described.

5. Both albumins and globulins can protect or sensitise gum benzoin suspensions, the effect depending on an appropriate dilution. This effect occurs qualitatively irrespective of the hydrogen ion concentration of the medium. Quantitatively the position of the zone of precipitation and its extent is contingent on the reaction of the medium.

6. The euglobulin fractions of normal and of luetie sera deprived as far as possible of their lipoids can be differentiated both by the Wassermann test, and by precipitation tests.

7. Delipoided euglobulins from horse serum will yield a Wassermann positive reaction when used in certain concentrations. In more concentrated solutions an anticomplementary effect is exhibited.

8. Evidence is presented for the view that the euglobulins of specific sera differ rather in their composition or state of aggregation than in quantity from the euglobulin of non-specific sera.

9. The changes in sensitising power and in the Wassermann reactivity of euglobulin caused by repeated freezing or exposure to ultra-violet light run a parallel course.

10. Attempts to change the Wassermann properties of normal sera are briefly described.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1926

References

REFERENCES

Abmand, R. (1922). La réaction du benjoin colloidal dans le sang. Compt. Rend. Soc. Biol. lxxxvii. 3221.Google Scholar
Bachmann, W. (1921). Serologische Studien mit Hilfe des Zeissschen Flüssigkeitsinter-ferometers. Zeitschr. f. Immunitätsforsch. Orig. xxxiii. 551.Google Scholar
Brandt, W. (1922). Die allgemeine Bedeutung der Kochsalz-Konzentration für serologische Reaktionen. Zeitschr. f. Immunitätsforsch. Orig. xxxiv. 304.Google Scholar
Dreyer, G. (1923). The Serum Diagnosis of Syphilis. The Wassermann and Sigma Reactions compared. Medical Research Council, Special Report Series, No. 78, p. 34.Google Scholar
Embden, G. & Mach, W. (1914). Chemische Definition der Wassermannschen Reaktion. Munchen. med. Wochenschr. lxi. 730.Google Scholar
Epstein, E. & Paul, FR. (1921). Zur Theorie der Serologie der Syphilis. Kolloid. Zeitschr. xxix. 310.CrossRefGoogle Scholar
Friedberger, E. & Scimone, V. (1923). Zur Wirkung der ultra-violetten Strahlen auf Antikorper, Antigene und auf die Komponenten der Wassermannschen Reaktion. Zeitschr. f. Immunitätsforsch. Orig. xxxvi. 341.Google Scholar
Georgi, F. & Lebenstein, H. (1922). Ueber die Bedeutung des Salzgehaltes für die Reaktionsfahigkeit aktiver Sera bei den Ausflockungsmethoden zum serologischen Luesnachweis. Zeitschr. f. Immunitätsforsch. Orig. xxxiii. 503.Google Scholar
Guillain, G., Laroche, G. & Kudelski, M. (1922). Sur la réaction du benjoin colloidal avec le serum sanguin. Compt. Rend. Soc. Biol. lxxxvii. 621.Google Scholar
Guillain, G., Laroche, G. & Lechelle, P. (1922). La reaction du Benjoin Colloidal. Paris: Masson et Cie.Google Scholar
Hartley, P. (1925). Observations on the Role of the Ether soluble Constituents of Serum in certain Serological Reactions. Brit. Journ. of Exper. Pathol. vi. 180.Google Scholar
Hirsch, P. & Liebers, M. (1922). Immunochemische Studien. Ueber den Einfluss der Inactiodrangstemperatur auf Meerschweinchenkomplement und menschlichen Serum. Fermentforschung, vi. 105.Google Scholar
Holker, J. (1922). Properties of syphilitic sera in relation to the specificity of immunity reactions. Journ. Pathol. and Bacteriol. xxv. 291.CrossRefGoogle Scholar
Jacobsthal, E. & Kafka, V. (1916). Ueber Untersuchung der Liquor cerebro spinalis mit Mastixlosungen. Berlin. klin. Wochenschr. liii. 98.Google Scholar
Kahn, R. L. (1925). Serum Diagnosis by Precipitation. Baltimore: Williams and Wilkins.Google Scholar
Kermack, W. O. & Voge, C. I. B. (1925). The action of salts with multivalent cations on colloidal solutions of gold and gum benzoin. Proc. Roy. Soc. Edinb. XLV. Pt. i. p. 90.Google Scholar
Nathan, E. (1920). Ueber das Verhalten experimentellen Wassermann-positiv gemachter Sera gegenüber der Ausflockungsreaktion sowie uber die Struktur des Syphilis Serums. Zeitschr. f. Immunitätsforsch. Orig. xxix. 562.Google Scholar
Nixon, C. E. & Naito, K. (1922). Studies of cerebrospinal fluid and blood of syphilitic and normal persons with special reference to the immunity reactions and the colloidal gold test on the original and ultra-filtered fluids and serums. Arch. Intern. Med. xxx. 182.CrossRefGoogle Scholar
Peyre, E. (1921). Disposition colloidale particulière aux sérums des syphilitiques et aux sérums dits “anticomplementaires.” Compt. Rend. Soc. Biol. lxxxiv. 536.Google Scholar
Rideal, E. K. (1926). An Introduction to Surface Chemistry, p. 295. C. U. Press.Google Scholar
Sachs, H., Klopstock, A. & Ohashi, T. (1924). Neuere Versuche zur Serodiagnostik der Syphilis mittels Ausflockung. Klin. Wochenschr. iv. 1363.CrossRefGoogle Scholar
Stern, R. (1923). Ueber den Mechanismus der serologischen Luesreaktionen. Klin. Wochenschr. ii. 1411.CrossRefGoogle Scholar
Taoka, K. (1922). On the meaning of serum globulin in luetic reactions. Kitasato's Arch. of Exper. Med. v. 1.Google Scholar
Wright, H. D. & Kermack, W. O. (1923). The Properties of Colloidal gum benzoin. Biochem. Journ. xvii. 635.CrossRefGoogle Scholar
Bruck, C. (1924). Wesen der Komplementbindungsreaktionen bei Syphilis in Handbuch der Serodiagnose der Syphilis, edited by Bruck, Carl, 2nd ed. pp. 145. Berlin: J. Springer.Google Scholar
Freundlich, H. (1924). Sensitization by means of hydrophile sols in The Theory and Application of Colloidal Behavior, edited by Bogue, R. H., vol. i. pp. 297324. New York: McGraw-Hill Book Co. Google Scholar
Jacobsthal, E. (1924). Prázipitations- und Flockungsreaktionen zum Luesnachweis. The Theory and Application of Colloidal Behavior pp. 236418.Google Scholar
Weisbach, W. (1925). Serodiagnose der Syphilis in Handbuch der Biochemie, edited by Oppenheimer, C., 2nd ed. vol. iii. pp. 510521. Jena: G. Fischer.Google Scholar
Weisbach, W. (1924). Wassermann Reaktion und Flockungsreaktionen einschliesslich der Trubungs-reaktionen, 2nd ed. Jena: G. Fischer.Google Scholar
Wells, H. G. (1925). The Chemical Aspects of Immunity, pp. 182195. New York: The Chemical Catalog Co. Google Scholar

A correction has been issued for this article: