Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T04:26:52.907Z Has data issue: false hasContentIssue false

The properties of different Salmonella Vi antigens

Published online by Cambridge University Press:  15 May 2009

A. Felix
Affiliation:
From the Central Enteric Reference Laboratory and Bureau, Public Health Laboratory Service (Medical Research Council), London
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The labile Vi antigens of Salmonella typhi, Salm. paratyphi A and B, and of Salm. typhi-murium were compared, especially in their response to various chemical and physical agents.

1. Inactivation by dilute acid:

(a) The TVi antigen is the most resistant to acid treatment, the BVi antigen is most readily inactivated and the AVi antigen holds an intermediate position.

(b) Pure Vi sera may be obtained by absorption with acid-treated bacilli, but this technique gives irregular results.

(c) Contrary to Kauffmann's statements, the TVi antigen is not ‘destroyed’ by acid treatment.

2. Inactivation by dilute alkali:

(a) All the Vi antigens so far tested are susceptible to dilute alkali.

(b) Complete inactivation, or extraction, of the Vi antigens is ensured when the yield of alkali-treated bacteria represents no more than 25% of the original bacterial count.

(c) The most reliable method of preparing a pure Vi serum is by absorption of the Vi + O serum with alkali-treated organisms of the same strain as that employed in immunization.

(d) Immunization with alkali-treated bacilli results in the elaboration of pure 0 antisera entirely devoid of Vi antibody.

3. Inactivation by heat (in aqueous suspensions):

(a) The TVi antigen is the one most readily inactivated, the BVi antigen is the one most resistant and the AVi antigen holds an intermediate position.

(b) These differences are only of minor significance, since similar differences have been established for the TVi antigen itself when it is contained in the two varieties of Vi strain of Salm. typhi.

4. Treatment with alcohol:

(a) Most of the properties of the three Salmonella Vi antigens remain unimpaired by alcohol treatment.

(b) The physico-chemical behaviour of alcohol-treated or heated bacilli, as exemplified by agglutinability by pure Vi antiserum, depends on the presence of other constituents of the bacterial cell.

5. Treatment with formalin:

(a) The Vi agglutinability of the different Salmonella is preserved undamaged for long periods of time. The 0 inagglutinability of Salm. typhi is also well maintained.

(b) It is not yet known whether formolized AVi and BVi antigens undergo an alteration that leads to ‘functional deficiency’ of the corresponding antibody similar to that of the altered T Vi antibody.

6. Treatment with phenol produces a reversible inactivation of the agglutinogenic activity of the T Vi antigen but not of the A Vi and B Vi antigens.

7. The inadequacy of the symbols employed by Kauffmann for expressing the changed reactivity of differently treated antigens is emphasized.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1952

References

REFERENCES

Ashida, T. (1949). Jap. J. exp. Med. 20, 181.Google Scholar
Bader, R. E. & Kleinmaier, H. (1952). Z. Hyg. InfektKr. 133, 434.CrossRefGoogle Scholar
Bensted, H. J. (1951). Brit. med. Bull. 7, 178.CrossRefGoogle Scholar
Bhatnagar, S. S. (1938). Brit. med. J. 2, 1195.CrossRefGoogle Scholar
Boivin, A. & Mesrobeanu, L. (1933). C.R. Soc. Biol., Paris, 112, 76.Google Scholar
Boivin, A. & Mesrobeanu, L. (1935). Rev. Immunol. 1, 553.Google Scholar
Bruce White, P. (1933). J. Path. Bact. 34, 65.CrossRefGoogle Scholar
Craigie, J. & Yen, C. H. (1938 a). Canad. publ. Hlth J. 29, 448.Google Scholar
Craigie, J. & Yen, C. H. (1938 b). Canad. publ. Hlth J. 29, 484.Google Scholar
Edwards, P. R. (1951). Pulb. Hlth Rep., Wash., 66, 837.CrossRefGoogle Scholar
Enterobacteriaceae Sub-Committee Of The Nomenclature Committee (1952). Proc. 5th Int. Congr. Microbiol. (1950) (in the Press), Rio de Janeiro.Google Scholar
Felix, A. (1924). J. Immunol. 9, 115.CrossRefGoogle Scholar
Felix, A. (1930). Lancet, 1, 505.CrossRefGoogle Scholar
Felix, A. (1938). J. Hyg., Camb., 38, 750.Google Scholar
Felix, A. (1941). Brit. med. J. 1, 391.CrossRefGoogle Scholar
Felix, A. (1950). Bull. World Hlth Org. 2, 643.Google Scholar
Felix, A. (1951 a). J. Hyg., Camb., 49, 268.CrossRefGoogle Scholar
Felix, A. (1951 b). Brit. med. Bull. 7, 153.CrossRefGoogle Scholar
Felix, A. & Anderson, E. S. (1951). J. Hyg., Camb., 49, 288.CrossRefGoogle Scholar
Felix, A. & Bhatnagar, S. S. (1935). Brit. J. exp. Path. 16, 422.Google Scholar
Felix, A., Bhatnagar, S. S. & Pitt, R. M. (1934). Brit. J. exp. Path. 15, 346.Google Scholar
Felix, A. & Callow, B. R. (1943). Brit. med. J. 2, 127.CrossRefGoogle Scholar
Felix, A. & Callow, B. R. (1951). Lancet, 2, 10.CrossRefGoogle Scholar
Felix, A. & Gardner, A. D. (1937). Quart. Bull. Hlth Org. L.o.N. 6, 223.Google Scholar
Felix, A. & Mitzenmacher, F. (1918). Wien. klin. Wschr. 31, 988.Google Scholar
Felix, A. & Petrie, G. F. (1938). J. Hyg., Camb., 38, 673.Google Scholar
Felix, A. & Pitt, R. M. (1934 a). J. Path. Bact. 38, 409.CrossRefGoogle Scholar
Felix, A. & Pitt, R. M. (1934 b). Lancet, 1, 186.CrossRefGoogle Scholar
Felix, A. & Pitt, R. M. (1936). Brit. J. exp. Path, 17, 81.Google Scholar
Felix, A. & Pitt, R. M. (1951). J. Hyg., Camb., 49, 92.CrossRefGoogle Scholar
Felix, A. & Robertson, M. (1928). Brit. J. exp. Path. 9, 6.Google Scholar
Grabar, P. & Corvazier, P. (1951). Ann. Inst. Pasteur, 80, 255.Google Scholar
Hayes, W. (1947 a). J. Path. Bact. 59, 51.CrossRefGoogle Scholar
Hayes, W. (1947 b). J. Hyg., Camb., 45, 111.CrossRefGoogle Scholar
Henderson, D. W. (1939 a). Brit. J. exp. Path. 20, 1.Google Scholar
Henderson, D. W. (1939 b). Brit. J. exp. Path. 20, 11.Google Scholar
Henderson, D. W. & Morgan, W. T. J. (1938). Brit. J. exp. Path. 19, 82.Google Scholar
Jude, A. (1950). Biol. méd. 39, No. 5.Google Scholar
Kauffmann, F. (1935). Z. Hyg. InfektKr. 116, 617.CrossRefGoogle Scholar
Kauffmann, F. (1936 a). Z. Hyg. InfektKr. 117, 778.CrossRefGoogle Scholar
Kauffmann, F. (1936 b). Z. Hyg. InfektKr. 118, 318.CrossRefGoogle Scholar
Kauffmann, F. (1941 a). J. Bact. 41, 127.CrossRefGoogle Scholar
Kauffmann, F. (1941 b). Die Bakteriologie der Salmonella-Gruppe. Copenhagen: Einar Munksgaard.Google Scholar
Kauffmann, F. (1943). Acta path. microbiol. scand. 20, 21.Google Scholar
Kauffmann, F. (1947 a). J. Immunol. 57, 71.CrossRefGoogle Scholar
Kauffmann, F. (1947 b). Acta path. microbiol. scand. 24, 591.CrossRefGoogle Scholar
Kauffmann, F. (1950). The Diagnosis of Salmonella Types. Springfield, Ill.: Charles C. Thomas.Google Scholar
Kauffmann, F. (1951). Enterobacteriaceae. Copenhagen: Einar Munksgaard.Google Scholar
Kauffmann, F. & Møller, E. (1940). J. Hyg., Camb., 40, 246.CrossRefGoogle Scholar
Monteverde, J. J. (1944). Rev. Fac. Agron. B. Aires, 2, 1.Google Scholar
Morgan, W. T. J. (1937). Biochem. J. 31, 2003.CrossRefGoogle Scholar
Morgan, W. T. J. & Partridge, S. M. (1942). Brit. J. exp. Path. 23, 151.Google Scholar
Peluffo, C. A. (1941). Proc. Soc. exp. Biol., N.Y., 48, 340.CrossRefGoogle Scholar
Raistrick, H. & Topley, W. W. C. (1934). Brit. J. exp. Path. 15, 113.Google Scholar
Salmonella Sub-Committee Of The Nomenclature Committee (1934). J. Hyg., Camb., 34, 333.CrossRefGoogle Scholar
Salmonella Sub-Committee Of The Nomenclature Committee (1949). Proc. 4th Int. Congr. Microbiol. (1947), p. 607. Copenhagen.Google Scholar
Schmid, E. & Kauffmann, F. (1952). Acta path. microbiol. scand. 30, 7.CrossRefGoogle Scholar
Schütze, H. (1936). J. Hyg., Camb., 36, 559.CrossRefGoogle Scholar
Spooner, E. T. C. (1949). The Nature of the Bacterial Cell. A Symposium, p. 106. Oxford: Blackwell.Google Scholar
Stuart, C. A. & Kennedy, E. R. (1948). Proc. Soc. exp. Biol., N.Y., 68, 455.CrossRefGoogle Scholar
Topley, W. W. C. (1933). Outline of Immunity. London: Arnold and Co.Google Scholar
Weibull, C. (1948). Biochim. Biophys. Acta, 2, 351.CrossRefGoogle Scholar
Weibull, C. (1949). Biochim. Biophys. Acta, 3, 378.CrossRefGoogle Scholar
Weil, E. & Felix, A. (1920). Z. ImmunForsch. 29, 24.Google Scholar