Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T05:00:13.621Z Has data issue: false hasContentIssue false

The reaction of H-substance with rabbit antisera

Published online by Cambridge University Press:  15 May 2009

R. G. S. Johns
Affiliation:
Department of Chemical Pathology, London Hospital Medical College, Whitechapel, E. 1
J. R. Marrack
Affiliation:
Department of Chemical Pathology, London Hospital Medical College, Whitechapel, E. 1
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Quantitative methods have been used in several investigations by Kabat and his colleagues (1945–50) in the study of serological relations of various preparations of blood-group substances. The investigations have taken twoforms: (1) the amounts of antibody nitrogen precipitated from a standard volume of an antiserum by varying amounts of the blood-group substances have been plotted against the amount of blood-group substance added; (2) the hexosamine has been measured in the precipitates formed with antiserum in the zone of antibody excess and the ratio of hexosamine precipitated to hexosamine in the blood-group substance added has been calculated; the amount of methyl-pentose precipitated has also been measured (Kabat, Baer &Knaub, 1949) and the ratio of methyl-pentose precipitated to methyl-pentose added hasbeen calculated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1953

References

Annison, E. F. & Morgan, W. T. J. (1952). Biochem. J. 52, 247.CrossRefGoogle Scholar
Beiser, S. & Kabat, E. A. (1951). J. Amer. chem. Soc. 73, 3501.CrossRefGoogle Scholar
Bendich, A., Kabat, E. A. & Bezer, A. E. (1946). J. exp. Med. 83, 485.CrossRefGoogle Scholar
Blix, G. (1948). Acta chem. scand. 2, 467.CrossRefGoogle Scholar
Conway, E. J. (1947). Microdiffusion Analysis and Volumetric Analysis. London: Crosby, Lockwood and Son.Google Scholar
Dische, Z. & Borenfreund, E. (1950). J. biol. Chem. 184, 517.Google Scholar
Dische, Z. & Shettles, L. B. (1948). J. biol. Chem. 175, 595.Google Scholar
Einbinder, J. (1950). J. biol. Chem. 185, 725.CrossRefGoogle Scholar
Elson, L. A. & Morgan, W. T. J. (1933). Biochem. J. 27, 1824.Google Scholar
Heidelberger, M. & Macpherson, C. F. C. (1943). Science, 97, 405; 98, 63.CrossRefGoogle Scholar
Immers, J. & Vasseur, E. (1950). Nature, Lond., 165, 898.CrossRefGoogle Scholar
Johnston, J. P., Ogston, A. G. & Stanier, J. E. (1951). Analyst, 76, 88.Google Scholar
Kabat, E. A., Baer, H., Day, R. L. & Knaub, V. (1950). J. exp. Med. 91, 433.CrossRefGoogle Scholar
Kabat, E. A., Baer, H. & Knaub, V. (1949). J. exp. Med. 89, 1.Google Scholar
Kabat, E. A., Bendich, A. & Bezer, A. E. (1946). J. exp. Med. 83, 477.CrossRefGoogle Scholar
Kabat, E. A., Bendich, A., Bezer, A. E. & Beiser, S. (1947). J. exp. Med. 85, 685.CrossRefGoogle Scholar
Kabat, E. A., Bendich, A., Bezer, A. E. & Knaub, V. (1948). J. exp. Med. 87, 293.Google Scholar
Kabat, E. A. & Bezer, A. E. (1945). J. exp. Med. 82, 207.CrossRefGoogle Scholar
Kabat, E. A. & Mayer, M. (1948). Experimental Immunochemistry, p. 312. Springfield, U.S.A.: C. C. Thomas.Google Scholar
Kekwick, R. A. (1940). Biochem. J. 34, 1248.CrossRefGoogle Scholar
Marrack, J. R., Hoch, H. & Johns, R. G. S. (1951). Brit. J. exp. Path. 32, 212.Google Scholar
Morgan, W. T. J. (1943). Brit. J. exp. Path. 24, 41.Google Scholar
Morgan, W. T. J. & Watkins, M. W. (1944). Brit. J. exp. Path. 25, 221.Google Scholar
Morgan, W. T. J. & Watkins, M. W. (1948). Brit. J. exp. Path. 29, 159.Google Scholar
Palmer, J. W., Smyth, E. M. & Mayer, K. (1937). J. biol. Chem. 119, 491.CrossRefGoogle Scholar
Rainsford, S. J. & Morgan, W. T. J. (1946). Lancet, 1, 154.Google Scholar