Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T02:07:20.624Z Has data issue: false hasContentIssue false

Rinderpest Immunity in Calves: I. The Acquisition and Persistence of Maternally Derived Antibody*

Published online by Cambridge University Press:  15 May 2009

R. D. Brown
Affiliation:
East African Veterinary Research Organization, Muguga, Kenya
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Rinderpest neutralizing antibody was found to be transferred from the immune dam to the calf via the colostrum. No antibodies were detected in the sera of calves before suckling. The colostrum of immune cows contained rinderpest antibodies to a higher titre than that of the serum; 30–48 hr. after the ingestion of such colostra, newborn calves possessed high antibody levels in their sera, levels greater than those of their dams' sera but less than those of the colostrum ingested.

After the neonatal period the serum titres of calves declined linearly. The mean half-life of maternally derived rinderpest antibody in calves was 36.7 days and the extinction point 10.9 months.

Two young calves, from susceptible dams, which each ingested daily for 5 weeks 1 gallon of milk containing rinderpest antibodies failed to show evidence of their absorption from the intestinal tract.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1958

References

Barr, M., Glenny, A. T. & Howie, J. W. (1953). J. Path. Bact. 65, 155.Google Scholar
Barr, M., Glenny, A. T. & Randall, K. J. (1949). Lancet, ii, 325.Google Scholar
Bollinger, O. (1877). Samml. klin. Vortr. no. 116.Google Scholar
Cited by Edsall, G. (1956), in Ann. N.Y. Acad. Sci. 66, 32.Google Scholar
Brambell, F. W. R., Hemimngs, W. A. & Henderson, M. (1951). Antibodies and Embryos. London: Athlone Press.Google Scholar
Brotherston, J. G. (1951). J. comp. Path. 61, 263.CrossRefGoogle Scholar
Brown, R. D. (1958a). Bull. epiz. Dis. Afr. 6, 127.Google Scholar
Brown, R. D. (1958c). J. Hyg., Camb., 56, 435.Google Scholar
Bruner, D. W., Edwards, P. R. & Doll, E. R. (1948). Cornell Vet. 38, 363.Google Scholar
Campbell, B., Sarwar, M. & Petersen, W. E. (1957). Science, 125, 932.CrossRefGoogle ScholarPubMed
Comline, R. S., Roberts, H. E. & Titchen, D. A. (1951). Nature, Lond., 167, 561.Google Scholar
Fukusho, K. & Nakamura, J. (1940). Jap. J. vet. Sci. 2, 75.CrossRefGoogle Scholar
Gillain, J. (1944). Immunite congenitale et virus peste bovine adapte sur chevre, pp. 3. Leopold-ville, Congo Belge. Govt. General Service Veterinaire. fcp. Mimeographed.Google Scholar
Hale, M. W., Walker, R. V. L., Maurer, F. D., Baker, J. A. & Jenkins, D. L. (1946). Amer. J. vet. Res., 7, 212.Google Scholar
Hansen, R. G. & Phillips, P. H. (1947). J. biol. Chem., 171, 223.CrossRefGoogle Scholar
Mason, J. H., Dalling, T. & Gordon, W. S. (1930). J. Path. Bact. 33, 783.Google Scholar
McAlpine, J. G. & Rettger, L. F. (1925). J. Immunol. 10, 811.CrossRefGoogle Scholar
McDiarmid, A. (1946). Vet. Rec. 58, 146.Google Scholar
McGirr, J. L. (1947). Vet. J. 103, 345.Google Scholar
Montgomery, R. E. (1915). Quoted by Stordy R. J. (1916), in Rep. Dep. Agric. B.E.A for 1915–16, p. 66.Google Scholar
Neill, J. M., Gaspari, E. L., Richardson, L. V. & Sugg, J. Y. (1932). J.Immunol. 22, 117.CrossRefGoogle Scholar
Rabagliati, D. S. (1924). J. comp. Path. 37, 1.CrossRefGoogle Scholar
Ratner, B., Jackson, H. C. & Gruehl, H. L. (1927). J. Immunol. 14, 249.Google Scholar
Schneider, B. (1955). Mh. Tierheilk. 7, 137. Abstracted in Vet. Bull., Weybridge, 26, Abstr. no. 1227.Google Scholar
Thompson, W. R. (1947). Bact. Rev. 11, 115.Google Scholar
Thorp, F. & Graham, R. (1933). J. Amer. vet. med. Ass. 82, 871.Google Scholar
Wiener, A. S. (1951). J. exp. Med. 94, 213.CrossRefGoogle Scholar