Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T05:08:13.201Z Has data issue: false hasContentIssue false

Rubella epidemiology in South East England

Published online by Cambridge University Press:  19 October 2009

D. J. Nokes
Affiliation:
Parasite Epidemiology Research Group, Department of Pure and Applied Biology, Imperial College, London University, London SW7 2BB
R. M. Anderson
Affiliation:
Parasite Epidemiology Research Group, Department of Pure and Applied Biology, Imperial College, London University, London SW7 2BB
M. J. Anderson
Affiliation:
Department of Medical Microbiology, University College London and the Middlesex Hospital Medical School, London University, London WC1E 6JJ
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Analyses of data collected in a large survey (sample size > 3000) of rubella antibody in South East England, finely stratified according to age, reveal age-dependent changes in the pattern of virus transmission. The rate or force of infection changes from low in the young children to high in the 5 - to 15-year-olds and back to low again in the adult age classes (there is a 50% reduction between the 5- to 15-year-olds and the 20+-year-olds). Raised levels of immunity are recorded in the teenage and young adult female segments of the population as a consequence of the UK rubella immunization programme. Mean antibody concentrations show a decline with age and are, on average, lower in vaccinated females when compared with unvaccinated males of the same age. The interpretation of horizontal cross-sectional serological data and future research needs are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

References

REFERENCES

Anderson, M. J., Kidd, M. & Morgan-Capner, P. (1985). Parvovirus and rubella negative rashes. Lancet ii, 663.CrossRefGoogle Scholar
Anderson, R. M. & Grenfell, B. T. (1986). Quantitative investigations of different vaccination policies for the control of congenital rubella syndrome (CRS) in the United Kingdom. Journal of Hygiene 96, 305333.CrossRefGoogle ScholarPubMed
Anderson, R. M., Grenfell, B. T. & May, R. M. (1984). Oscillatory fluctuations in the incidence of infectious disease and the impact of vaccination: time series analysis. Journal of Hygiene 93, 587608.CrossRefGoogle ScholarPubMed
Anderson, R. M. & May, R. M. (1982 a). Directly transmitted infectious diseases: control by vaccination. Science 215, 10531060.CrossRefGoogle ScholarPubMed
Anderson, R. M. & May, R. M. (1982 b). The logic of vaccination. New Scientist, 96, 410415.Google ScholarPubMed
Anderson, R. M. & May, R. M. (1983 a). Vaccination against rubella and measles: quantitative investigations of different policies. Journal of Hygiene 90, 259325.CrossRefGoogle ScholarPubMed
Anderson, R. M. & May, R. M. (1983 b). Two-stage vaccination programme against rubella. Lancet ii, 14161417.CrossRefGoogle Scholar
Anderson, R. M. & May, R. M. (1984). Spatial, temporal and genetic heterogeneity in host populations and the design of immunization programmes. IMA Journal of Mathematics Applied in Medicine and Biology 1, 223266.CrossRefGoogle ScholarPubMed
Anderson, R. M. & May, R. M. (1985). Age-related changes in the rate of disease transmission: implications for the design of vaccination programmes. Journal of Hygiene 94, 365436.CrossRefGoogle ScholarPubMed
Balfour, H. H. Jr , Groth, K. E., Edelman, C. K., Amren, D. P., Best, J. M. & Banatvala, J. E. (1981). Rubella viraemia and antibody responses after rubella vaccination and reimmunisation. Lancet i, 10781080.CrossRefGoogle Scholar
Black, F. L. (1959). Measles antibodies in the population of New Haven, Connecticut. Journal of Immunology 83, 7483.CrossRefGoogle ScholarPubMed
CDR (1984). PHLS Communicable Disease Report, 84/35.Google Scholar
Clarke, M., Schild, G. C., Boustred, J., McGregor, I. A. & Williams, K. (1980). Epidemiological studies of rubella virus in a tropical African community. Bulletin of the World Health Organisation 58, 931935.Google Scholar
Clarke, M., Schild, G. C., Miller, C., Barbara, J. A. (1983). Surveys of rubella antibodies in young adulta and children. Lancet i, 667669.CrossRefGoogle Scholar
Cohen, B. J. & Shirley, J. A. (1985). Dual infection with rubella and human parvovirus. Lancet ii, 662663.CrossRefGoogle Scholar
Dietz, K. (1981). The evaluation of rubella vaccination strategies. In The Mathematical Theory of the Dynamics of Biological Populations, vol. II (ed. Hiorns, R. W. and Cooke, D.), pp. 8198. London: Academic Press.Google Scholar
Enders, G. (1985). Rubella antibody titres in vaccinated and nonvaccinated women and results of vaccination during pregnancy. Reviews of Infectious Diseases 7 (suppl. 1), S 103107.CrossRefGoogle ScholarPubMed
Field, A. M. (1967). The occurrence of neutralising and complement fixing antibodies in rubella. Journal of Hygiene 65, 409421.CrossRefGoogle ScholarPubMed
Fine, P. E. M. & Clarkson, J. A. (1982). Measles in England and Wales. I. An analysis of factors underlying seasonal patterns. International Journal of Epidemiology 11, 514.CrossRefGoogle ScholarPubMed
Finney, D. J. (1978). Statistical Method in Biological Assay, 3rd ed.London: Griffin.Google Scholar
Grenfell, B. T. & Anderson, R. M. (1985). The estimation of age-related rates of infection from case notifications and serological data. Journal of Hygiene 95, 419436.CrossRefGoogle ScholarPubMed
Griffiths, D. A. (1974). A catalytic model of infection for measles. Applied Statistics 23, 330339.CrossRefGoogle Scholar
Harcourt, G. C., Best, J. M. & Banatvala, J. E. (1980). Rubella-specific serum and nasopharyngeal antibodies in volunteers with naturally acquired and vaccine-induced immunity after intranasal challenge. Journal of Infectious Diseases 142(2), 145155.CrossRefGoogle ScholarPubMed
Hethcote, H. W. (1983). Measles and rubella in the United States. American Journal of Epidemiology 117(i), 213.CrossRefGoogle ScholarPubMed
Kantarovich, R. H., Goldfarb, L. G., Volcauna, N. T. & Myskin, A. A. (1983). Analysis of epidemiological peculiarities of rubella based on a mathematical model. Journal of Hygiene, Epidemiology, Microbiology and Immunology [Prague) 27, 4350.Google Scholar
Kato, S., Muranaka, S., Takakura, I., Kimura, M. & Tsuji, K. (1982). HLA-DR antigens and tho rubella-specific immune response in man. Tissue Antigens 19, 140145.CrossRefGoogle Scholar
Knox, E. G. (1980). Strategy for rubella vaccination. International Journal of Epidemiology 9, 1323.CrossRefGoogle ScholarPubMed
Kurtz, J. B., Mortimer, P. P., Mortimer, P. R., Morgan-Capner, P., Shafi, M. S. & White, G. B. B. (1980). Rubella antibody measured by radial haemolysis. Characteristics and performance of a simple screening method for use in diagnostic laboratories. Journal of Hygiene 84, 213222.CrossRefGoogle ScholarPubMed
Miller, C. L., Miller, E., Sequeira, P. J. L., Craddock-Watson, J. E., Langson, M. & Wiseberg, E. L. (1985). Effect of selective vaccination on rubella susceptibility and infection in pregnancy. British Medical Journal (In the Press.)CrossRefGoogle ScholarPubMed
Morgan-Capner, P. (1984). The detection of rubella-specific antibody. PHLS Microbiology Digest 1, 611.Google Scholar
Mortimer, P. P., Edwards, J. M. B., Porter, A. D., Tedder, R. S., Mace, J. E. & Hutchinson, A. (1981). Are many women immunized against rubella unnecessarily? Journal of Hygiene 87, 131138.CrossRefGoogle ScholarPubMed
Muench, H. (1959). Catalytic Models in Epidemiology. Harvard: University Press.CrossRefGoogle Scholar
Neumann, P. W. & Weber, J. M. (1983). Single radial haemolysis test for rubella immunity and recent infection. Journal of Clinical Microbiology 17, 2834.CrossRefGoogle ScholarPubMed
O'Shea, S., Best, J. M. & Banatvala, J. E. (1983). Viremia, virus excretion and antibody responses after challenge in volunteers with low levels of antibody to rubella virus. Journal of Infectious Diseases 148(4) ,639–647.CrossRefGoogle ScholarPubMed
O'Shea, S., Best, J. M. & Banatvala, J. E. (1984). Persistence of rubella antibody 8–18 years after vaccination. British Medical Journal 288, 1043.CrossRefGoogle ScholarPubMed
O'Shea, S., Best, J. M., Banatvala, J. E., Marshall, W. C., Dudgeon, J. A. (1982). Rubella vaccination: persistence of antibodies for up to 16 years. British Medical Journal 285, 253–5.CrossRefGoogle ScholarPubMed
O'SHEA, S., Best, J. M., Banatvala, J. E. & Shepherd, W. M. (1985). Development and persistence of class-specific antibodies in the serum and nasopharyngeal washings of rubella vaccines. Journal of Infectious Diseases 151, 8997.CrossRefGoogle Scholar
Public Health Laboratory Service (1982). Monograph No. 16 (ed. Pattison, J. R.). London: Her Majesty's Stationery Office.Google Scholar
Roitt, I. M. (1984). Essential Immunology, 5th ed.London: Blackwell Scientific Publications.Google Scholar
Schenzle, P. (1984). An age-structured model of pre-and post-vaccination measles transmission. IMA Journal of Mathematics Applied in Medicine and Biology 1, 169192.CrossRefGoogle ScholarPubMed
Spencer, M. J., Cherry, J. D., Powell, K. R., Mickey, M. R., Terasaki, P. I., Marcy, S. M. & Sumaya, C. U. (1977). Antibody responses following rubella immunisation analysed by HLA and ABO types. Immunogenetics 4, 365372.CrossRefGoogle Scholar
Wagenvoort, J. H., Harmsen, M., Boutahar-Trouw, B. J. K., Kraaueveld, C. A. & Winkler, K. C. (1980). Epidemiology of mumps in the Netherlands. Journal of Hygiene 85, 313326.CrossRefGoogle ScholarPubMed
Yorke, J. A. & London, W. P. (1973). Recurrent outbreaks of measles, chickenpox and mumps; II systematic differences in contact rates and stochastic effects. American Journal of Epidemiology 98, 469482.CrossRefGoogle ScholarPubMed