Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T04:41:41.684Z Has data issue: false hasContentIssue false

The Serological Classification of Haemolytic Streptococci obtained from Cases of Scarlet Fever

Published online by Cambridge University Press:  15 May 2009

J. Smith
Affiliation:
(City Hospital Laboratory, Aberdeen.)
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Haemolytic streptococci have been obtained from throat cultures of 92 per cent. of cases of scarlet fever in the first two days of the disease.

Strains from 210 cases were found to belong to two main serological types, Type I strains being obtained from 119 cases, and Type II strains from 57 cases.

Strains obtained from cases occurring in members of the same family were found to be mainly of the same serological type.

Strains obtained from cases in small isolated outbreaks were found to be of the same serological type.

Note. These Type I and Type II strains have been examined by Dr Griffith, Ministry of Health, Pathological Laboratory, London, and have been found to conform to his main types.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1926

References

REFERENCES

Aronson, H. (1903). Weitere Untersuchungen über Streptococcen. Deutsch. med.Wchnschr. xxix. 439.Google Scholar
Bliss, W. P. (1920). A biologic study of haemolytic streptococci from the throats of patients suffering from scarlet fever. Bull. Johns Hopkins Hosp. xxi. 173.Google Scholar
Bliss, W. P. (1922). Antigenic relationships between strains of Streptococcus haemolyticus isolated from scarlet fever. J. Exp. Med. xxxvi. 575.CrossRefGoogle Scholar
De Kruif, P. H. (1921 a). Change of acid agglutination optimum as index of bacterial mutation. J. Gen. Physiol. iv. 387.Google Scholar
De Kruif, P. H. (1921 b). The mechanism of granular growth of the rabbit septicaemia bacillus type G. J. Gen. Physiol. iv. 395.Google Scholar
De Kruif, P. H. and Ireland, P. M. (1920). Streptolysin. J. Inf. Dis. xxvi. 285.CrossRefGoogle Scholar
Dick, G. F. and Dick, G. H. (1924). The prevention of scarlet fever. J. Amer. Med.Assoc. lxxxiii. 84.Google Scholar
Dochez, A. R. and Bliss, W. P. (1920). Biologic study of haemolytic streptococci from throats of patients suffering from scarlet fever. J. Amer. Med.Assoc. lxxiv. 1601.Google Scholar
Eagles, G. H. (1924). The significance of serological groups of haemolytic streptococci with special reference to Streptococcus scarlatinae. J. Exp. Path. v. 199.Google Scholar
Gordon, M. H. (1921). A serological study of haemolytic streptococci. Brit. Med. J. i. 632.Google Scholar
Holman, W. L. (1916). The classification of streptococci. J. Med. Res. xxxiv. 377.Google Scholar
Mellon, R. R., Hastings, W. S. and Anastasia, C. (1924 a). Role of surface tension and potential difference in the stability of a diphtheria-like bacillus. Proc. Soc. Exp. Biol. and Med. xxi. 279.Google Scholar
Mellon, R. R., Hastings, W. S. and Anastasia, C. (1924 b). A paradoxical stability phenomenon with spontaneously agglutinating diphtheria bacilli and its practical import. Proc. Soc. Exp. Biol. and Med. xxi. 421.Google Scholar
Mellon, R. R., Hastings, W. S. and Anastasia, C. (1924 c). Spontaneous agglutination of bacteria. J. Immunol. ix. 365.Google Scholar
Moser, P. (1902). Ueber die Behandlung des Scharlachs mit einem Scharlach-streptococcenserum. Wien. Klin. Wchnschr. xv. 1053.Google Scholar
Moser, P. and von Pirquet, C. (1903). Zur Agglutination der Streptococcen. Centralbl. f. Bakteriol. xxxiv. 506, 714.Google Scholar
Nakayama, Y. (1919). Agglutination of streptococci. J. Inf. Dis. xxiv. 489.CrossRefGoogle Scholar
Neufeld, F. (1903). Ueber Immunitat und Agglutination bei Streptococcen. Zeitschr. f. Hygiene, xliv. 161.Google Scholar
Northrop, J. H. (1921). The stability of bacterial suspensions. I. A convenient cell for microscopic cataphoresis experiments. J. Gen. Physiol. iv. 629.Google Scholar
Northrop, J. H. (1922). The stability of bacterial suspensions. VI. The influence of the concentration of the suspension on the concentration of salt required to cause complete agglutination. J. Gen. Physiol. v. 605.Google Scholar
Northrop, J. H. and De Kruif, P. H. (1921 a). The stability of bacterial suspensions. II. The agglutination of bacillus of rabbit septicaemia and of B. typhosus by electrolytes. J. Gen. Physiol. iv. 639.Google Scholar
Northrop, J. H. and De Kruif, P. H. (1921 b). The stability of bacterial suspensions. III. Agglutination in the presence of proteins, normal serum and immune sera. J. Gen. Physiol. iv. 655.Google Scholar
Northrop, J. H. and De Kruif, P. H. (1922 a). The stability of bacterial suspensions. IV. The combination of antigen and antibody at different hydrogen ion concentrations. J. Gen. Physiol. v. 127.Google Scholar
Northrop, J. H. and De Kruif, P.H. (1922 b). The stability of bacterial suspensions. V. The removal of antibody from sensitised organisms. J. Gen. Physiol. v. 139.Google Scholar
Northrop, J. H. and De Kruif, P.H. (1923). Stable suspensions of autoagglutinable bacteria. J. Exp. Med. xxxvii. 647.Google Scholar
Rossiwall, E. and Schick, B. (1905). Ueber spezifische Agglutination von Streptokokken aus Scharlachanginen und extrabukkalem Primaraffekt. Wien. klin. Wchnschr. xviii. 3.Google Scholar
Ruediger, G. (1906). The streptococci from scarlatinal and normal throats and from other sources. J. Inf. Dis. iii: 755.Google Scholar
Shibley, G. S. (1924 a). Studies in agglutination. I. The agglutination of streptococci. J. Exp. Med. xxxix. 245.CrossRefGoogle Scholar
Shibley, G. S. (1924 b). Studies in agglutination. II. The relationship of reduction of electrical charge to specific bacterial agglutination. J. Exp. Med. xl. 453.Google Scholar
Stevens, F. A. and Dochez, A. R. (1924 a). Agglutination and absorption of agglutinins with Streptococcus scarlatinae. J. Exp. Med. xl. 253.CrossRefGoogle Scholar
Stevens, F. A. and Dochez, A. R. (1924 b). Studies in the biology of streptococcus. IV. The occurrence of S. scarlatinae in convalescence and in the complications of scarlet fever. J. Exp. Med. xl. 493.Google Scholar
Stevens, F. A. and Dochez, A. R. (1924 c). The study of haemolytic streptococci associated with scarlet fever. Proc. Soc. Exp. Biol. and Med. xxi. 37.Google Scholar
Tunnicliffe, R. (1920). The specific nature of the haemolytic streptococcus from scarlet fever. J. Amer. Med. Assoc. lxxiv. 1386.Google Scholar
Tunnicliffe, R. (1922). Group specificness. J. Inf. Dis. xxxi. 372.Google Scholar
Weaver, G. H. (1904). Agglutination of streptococci, especially those cultivated from cases of scarlatina, by human sera. J. Inf. Dis. i. 91.Google Scholar
Williams, Anna (1925). The relationship between antibodies. A report on scarlet fever. Amer. J. Pub. Health, xv. 129.Google Scholar