Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-14T04:20:50.088Z Has data issue: false hasContentIssue false

Soluble antigens obtained from influenza virus by treatment with non-ionic detergent

Published online by Cambridge University Press:  15 May 2009

M. J. Corbel
Affiliation:
Department of Bacteriology and Immunology, London School of Hygiene and Tropical Medicine, Keppel Street, W.C. 1
C. J. M. Rondle
Affiliation:
Department of Bacteriology and Immunology, London School of Hygiene and Tropical Medicine, Keppel Street, W.C. 1
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Highly purified influenza virus was degraded using anionic and non-ionic detergents. Best results were obtained using the non-ionic detergent Triton N101. Tests showed that virus extracts contained neuraminidase and a substance that reacted specifically with rabbit antibody to virus haemagglutinin (specific serum blocking substance). Haemagglutination-inhibiting antibody was produced when virus extracts were inoculated into guinea-pigs. Immunodiffusion tests showed that extracts were complex. Host-specific material was regularly found. Under appropriate conditions S-antigen was detected as a single line pattern component. Two or more virus-specific materials were also present. One of these was probably neuraminidase and the other the specific serum blocking substance.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1970

References

Aminoff, D. (1961). Methods for the quantitative estimation of N-acetyl neuraminic acid and their application to hydrolysates of sialo-mucoids. Biochemical Journal 81, 384.CrossRefGoogle Scholar
Ananthanarayan, R. (1954). The fabric of virus elementary bodies. British Journal of Experimental Pathology 35, 381.Google ScholarPubMed
Burton, K. (1956). A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochemical Journal 62, 315.CrossRefGoogle ScholarPubMed
Choppin, P. W. & Stoeckenius, W. (1964). Interactions of ether-disrupted influenza A2 virus with erythrocytes, inhibitors and antibodies. Virology 22, 482.CrossRefGoogle ScholarPubMed
Corbel, M. J., Rondle, C. J. M. & Bird, R. (1970). Effect of non-ionic detergent on influenza virus. Journal of Hygiene 68, 77.CrossRefGoogle ScholarPubMed
Davenport, F. M., Hennessy, A. V., Brandon, F. M., Webster, R. G., Barratt, C. D. Jr & Lease, G. O. (1964). Comparison of serological and febrile responses in humans to vaccination with influenza A viruses or their haemagglutinins. Journal of Laboratory and Clinical Medicine 63, 5.Google ScholarPubMed
Davis, B. J. (1964). Disc electrophoresis. II. Method and application to human serum proteins. Annals of the New York Academy of Sciences 121, 404.CrossRefGoogle ScholarPubMed
Duc-Nguyen, H., Rose, H. M. & Morgan, C. (1966). An electron microscopic study of changes at the surface of influenza-infected cells as studied by ferritin-conjugated antibodies. Virology 28, 404.CrossRefGoogle ScholarPubMed
Fabiyi, A., Lief, F. & Henle, W. (1958). Antigenic analysis of influenza virus by complement fixation. II. The production of antisera to strain-specific V antigens in guinea-pigs. Journal of Immunology 81, 467.CrossRefGoogle ScholarPubMed
Hána, L. & Hoyle, L. (1966). The disintegration of the internal ribonucleoprotein of influenza virus A with the production of serologically distinct components. Acta Virologica 10, 506.Google Scholar
Harboe, A., Borthne, B. & Berg, K. (1961). Antibody against normal egg material resulting from influenza vaccination. Acta Pathologica et Microbiologica Scandinavica 53, 95.CrossRefGoogle ScholarPubMed
Haukenes, G., Harboe, A. & Mortensson-Egnund, K. (1965). A uronic and sialic acid free chick allantoic mucopolysaccharide sulphate which combines with influenza virus HI-antibody to host material. I. Purification of the substance. Acta Pathologica et Microbiologica Scandinavica 64, 534.CrossRefGoogle ScholarPubMed
Hennisch, M. P. (1960). Virus antigen antibody reactions by gel diffusion. International Archives of Allergy and Applied Immunology 16, 153.CrossRefGoogle ScholarPubMed
Hobson, D. (1966). The strain-specific serological activity of a non-haemagglutinating fraction of influenza virus. British Journal of Experimental Pathology 47, 257.Google Scholar
Howe, C., Lee, L. T., Harboe, A. & Haukenes, G. (1967). Immunochemical study of influenza virus and associated host tissue components. Journal of Immunology 98, 543.CrossRefGoogle ScholarPubMed
Howe, C., Lee, L. T. & Rose, H. M. (1961). Collocalia mucoid: a substrate for Myxovirus neuraminidase. Archives of Biochemistry and Biophysics 95, 512.CrossRefGoogle ScholarPubMed
Hoyle, L. (1945). An analysis of the complement fixation reaction in influenza. Journal of Hygiene 44, 170.CrossRefGoogle ScholarPubMed
Hoyle, L. (1948). The growth cycle of influenza virus A. A study of the relations between virus, soluble antigen and host cell in fertile eggs inoculated with influenza virus. British Journal of Experimental Pathology 29, 390.Google ScholarPubMed
Hoyle, L. (1950). The multiplication of influenza viruses in the fertile egg. Journal of Hygiene 48, 277.CrossRefGoogle ScholarPubMed
Hoyle, L. (1952). Structure of the influenza virus. The relation between biological activities and the chemical structure of virus fractions. Journal of Hygiene 50, 229.CrossRefGoogle ScholarPubMed
Ivaničova, S. (1968). Immunodiffusion reaction with influenza virus haemagglutinin. Acta Virologica 12, 171.Google ScholarPubMed
Jensen, K. E. & Francis, T. (1953). Antigen-antibody precipitates in solid medium with influenza virus. Journal of Immunology 70, 321.CrossRefGoogle ScholarPubMed
Klamerth, O. (1961). Virus und enzymatische Eigenschaffen. Über ein Adenosindiphosphat spaltendes Enzym und seine Assoziation mit dem Influenza-Virus. Zeitschrift für Naturforschung 16b, 781.CrossRefGoogle Scholar
Knight, C. A. (1946). Precipitin reaction of highly purified influenza viruses and related materials. Journal of Experimental Medicine 83, 281.CrossRefGoogle ScholarPubMed
Kosyakov, P. N. & Rovnova, Z. I. (1965). Antigenic host components in the virus structure. Voprossy Virusologii 10, 17.Google Scholar
Kroeger, A. V. (1962). Evidence for the absence of anaphylactogenic host protein in highly purified PR 8 influenza virus. Journal of Immunology 89, 136.CrossRefGoogle Scholar
Laver, W. G. (1963). The structure of influenza viruses. 3. Disruption of the virus particles and separation of neuraminidase activity. Virology 20, 251.CrossRefGoogle Scholar
Lennette, E. & Horsfall, F. L. (1941). Studies on influenza virus. The complement-fixing antigen of influenza A and swine influenza viruses. Journal of Experimental Medicine 73, 581.CrossRefGoogle ScholarPubMed
Lief, F., Fabiyi, A. & Henle, W. (1958). Antigenic analysis of influenza viruses by complement fixation. Journal of Immunology 80, 53.CrossRefGoogle Scholar
Mizutani, H. (1963). A simple method for purification of influenza virus. Nature 198, 109.CrossRefGoogle Scholar
Neurath, A. R. & Sokol, F. (1963). Association of myxoviruses with an adenosine diphosphatase/adenosine triphosphatase as revealed by chromatography on DEAE-cellulose and by density gradient centrifugation. Zeitschrift für Naturforschung 18b, 1050.CrossRefGoogle Scholar
Nikolova, Z. & Kavaklova, L. (1967). Reaktsia immunodiffuzii v agare u virusof grippa. Trudy Nauchno-Issledovatel'skogo Instituta Epidemiologii i Mikrobiologii Sofia 12, 211.Google Scholar
Norrby, E. (1962). Haemagglutination by measles virus. 4. A simple procedure for production of high potency antigen for haemagglutination inhibition (HI) tests. Proceedings of the Society for Experimental Biology and Medicine 111, 814.CrossRefGoogle ScholarPubMed
Ouchterlony, O. (1948). Antigen-antibody reactions in gels. Acta Pathologica et Microbiologica Scandinavica 32, 231.CrossRefGoogle Scholar
Paniker, C. K. J. (1968). Serological relationships between the neuraminidases of influenza viruses. Journal of General Virology 2, 385.CrossRefGoogle ScholarPubMed
Reginster, M. (1965). Inactivation of influenza virus by caseinase C from Streptomyces albus G culture-filtrates. Journal of General Microbiology 40, 157.CrossRefGoogle Scholar
Reginster, M. (1966). Release of influenza virus neuraminidase by caseinase C of Streptomyces albus H. Journal of General Microbiology 42, 323.CrossRefGoogle Scholar
Schild, G. C. & Pereira, H. G. (1969). Characterisation of the ribonucleoprotein and neuraminidase of influenza A viruses by immunodiffusion. Journal of General Virology 4, 355.CrossRefGoogle ScholarPubMed
Smith, W. (1952). The structural and functional plasticity of influenza virus. Lancet i, 885.CrossRefGoogle Scholar
Smith, W., Belyavin, G. & Sheffield, F. W. (1955). The host tissue component of influenza viruses. Proceedings of the Royal Society, Series B 143, 504.Google ScholarPubMed
Styk, B. & Hána, L. (1966). Immuno-diffusion studies on the reaction of influenza virus with specific antibody and non-specific β-inhibitor. Acta Virologica 10, 281.Google Scholar
Styk, B., Hána, L. & SedíLeková, M. (1968). Antibody response to natural influenza A2 infection of man as studied by gel double diffusion. Acta Virologica 12, 208.Google Scholar
Sutherland, W. E., Cori, C. F., Haynes, R. & Olsen, A. S. (1949). Purification of the hyperglycaemic-glycogenolytic factor from insulin and from gastric mucosa. Journal of Biological Chemistry 180, 825.CrossRefGoogle ScholarPubMed
Szalkowski, C. R. & Maeder, W. J. (1952). Colorimetric determination of desoxycholic acid in ox bile. Analytical Chemistry 24, 1602.CrossRefGoogle Scholar
Tyrrell, D. A. J. & Horsfall, F. L. (1954). Disruption of influenza virus. Properties of degradation products of the virus particle. Journal of Experimental Medicine 99, 321.CrossRefGoogle ScholarPubMed
Wadsworth, C. (1957). A slide microtechnique for the analysis of immune precipitates in gel. International Archives of Allergy and Applied Immunology 10, 355.CrossRefGoogle ScholarPubMed
World Health Organization Expert Committee on Influenza (1953). World Health Organization Technical Report Series No. 64.Google Scholar