Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-03T21:54:33.607Z Has data issue: false hasContentIssue false

Some observations on reversed anaphylaxis

Published online by Cambridge University Press:  15 May 2009

M. van den Ende
Affiliation:
From the Department of Pathology, University of Cambridge
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The symptoms and autopsy findings in guinea-pigs following intravenous injection of antisera prepared against guinea-pig serum or serum fractions are described. Two types of reaction were observed, acute and delayed, similar to those described in direct anaphylaxis.

2. The alterations in systemic blood pressure, pulmonary arterial pressure, and bronchial resistance, were investigated and found to simulate closely those observable in ordinary anaphylactic shock.

3. The antisera have the power of stimulating contraction of the isolated uterus of the guinea-pig, either in the presence or absence of excess guinea-pig serum. The reaction, like that observed in direct anaphylaxis, is therefore cellular.

4. Antisera prepared against guinea-pig serum proteins contain, in addition to precipitins, agglutinins for the red cells of that species, and Forssmann antibody. Neither of the last two antibodies, however, is responsible for the shock phenomena here described. It appears that the potency of a serum to produce shock in guinea-pigs is dependent on several factors, of which the most important is the content in precipitins reacting with the guinea-pig serum proteins. These precipitins give rise to the reactions following intravenous injection into guinea-pigs, not merely as a result of humoral combination with homologous antigens, but largely, if not wholly, as the result of an immune reaction with antigens in the protoplasm of the tissue cells.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1939

References

REFERENCES

Adair, G. S. & Robinson, M. E. (1930). Biochem. J. 24, 993.CrossRefGoogle Scholar
Amako, T. (1914). Z. ImmunForsch. 22, 641.Google Scholar
Aronson, J. D. (1927). J. Immunol. 13, 289.CrossRefGoogle Scholar
Aronson, J. D. (1928). J. Immunol. 15, 465.CrossRefGoogle Scholar
Auer, J. & Lewis, P. A. (1910). J. exp. Med. 12, 151.CrossRefGoogle Scholar
Biedl, A. & Kraus, R. (1909). Wien. Klin. Wschr. 22.Google Scholar
Coca, A. (1914). Z. ImmunForsch. 20, 622.Google Scholar
Coca, A. (1919). J. Immunol. 4, 209.CrossRefGoogle Scholar
Dale, H. H. (1913). J. Pharmacol. 4, 167.Google Scholar
Dale, H. H. (1929). Lancet, 1, 1285.Google Scholar
Dale, H. H. & Kellaway, C. H. (1921). J. Physiol. 54, 143P.Google Scholar
Dale, H. H. & Kellaway, C. H. (1922). Philos. Trans. B, 211, 273.Google Scholar
Dale, H. H. & Laidlaw, P. P. (1910). J. Physiol. 41, 318.CrossRefGoogle Scholar
Dean, H. R. & Webb, R. A. (1926). J. Path. Bact. 29, 473.Google Scholar
Dean, H. R., Williamson, R. & Taylor, G. L. (1936). J. Hyg., Camb.,36, 570.Google Scholar
Doerr, R. (1914). Weichardts Ergebnisse, 1, 351. Quoted by Weil, R. (1917), J. Immunol. 2, 95.Google Scholar
Doerr, R. (1929). Handbuch der Pathogenen Mikroorganismen (Kolle and Wassermann, Jena), Lfg. 29, Band 1.Google Scholar
Doerr, R. & Moldovan, J. (1910). Z. ImmunForsch. 7, 223.Google Scholar
Doerr, R. & Moldovan, J. (1912). Biochem. Z. 41, 27.Google Scholar
Doerr, R. & Pick, R. (1913). Z. ImmunForsch. 19, 251.Google Scholar
Doerr, R. & Weinfurter, F. (1913). Zbl. Bakt. 67, 92.Google Scholar
Drinker, C. K. & Went, S. (1928). Amer. J. Physiol. 85, 468.CrossRefGoogle Scholar
Farmer, L. (1938). J. Immunol. 33, 9.CrossRefGoogle Scholar
Feldberg, W. & Kellaway, C. H. (1938). J. Physiol. 94, 2, 187.Google Scholar
Friedberger, E. (1910). Z. ImmunForsch. 4, 636.Google Scholar
Friedberger, E. & Siedenberg, S. (1927). Z. ImmunForsch. 51, 276.Google Scholar
Hanzlik, P. J. & Karsner, H. T. (1920). J. Pharmacol. 14, 379.Google Scholar
Hyde, R. R. (1927). Amer. J. Hyg. 7, 614.Google Scholar
Kraus, R. (1909). Z. ImmunForsch. 3, 133.Google Scholar
De Kruif, P. H. (1917). J. infect. Dis. 20, 717.CrossRefGoogle Scholar
Kumagai, T. (1913). Z. ImmunForsch. 17, 607.Google Scholar
Novy, F. G., De Krief, P. H. & Novy, R. L. (1917). J. infect. Dis. 20, 499, etc.CrossRefGoogle Scholar
Otto, R. (1906). v. Leutholdsche. Gedenkschrift, 1.Google Scholar
Redfern, W. W. (1926). Amer. J. Hyg. 6, 276.Google Scholar
Richet, (1902). C. R. Soc. Biol., Paris. 54, 831.Google Scholar
Rosenau, M. J. & Anderson, J. F. (1906). J. med. Res. 15, 179; Bull. U.S. hyg. Lab. no. 29.Google Scholar
Sacharoff, G. P. (1926). Virchows Arch. 261, 751.CrossRefGoogle Scholar
Smadel, J. E. & Swift, H. F. (1937). J. Immunol. 32, 75.CrossRefGoogle Scholar
Taniguchi, T. (1922). J. Path. Bact. 25, 77.CrossRefGoogle Scholar
Turro, R. & Gonzalez, P. (1912). C.R. Soc. Biol., Paris, 72, 567.Google Scholar
Uhlenhuth, P. & Haendel, (1910). Quoted by Doerr, R. (1929).Google Scholar
Weil, R. (1913). J. med. Res. 27, 497; 28, 243.Google Scholar
Weil, R. (1914). J. med. Res. 29, 233; 30, 87, 299; J. Immunol. 1, 19, 35, 47.Google Scholar
Weil, R. (1917). J. Immunol. 2, 95, 109, 399, 469, 525, 571.CrossRefGoogle Scholar
Wells, H. G. (1925). The Chemical Aspects of Immunity. New York: Chemical Catalog Co., Inc.Google Scholar
Wilcox, H. B. & Andrus, E. C. (1938). J. exp. Med. 67, 169.CrossRefGoogle Scholar
Williamson, R. (1936). J. Hyg., Camb., 36, 588.CrossRefGoogle Scholar