Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-14T04:24:44.120Z Has data issue: false hasContentIssue false

Some observations on the classification of enterococci

Published online by Cambridge University Press:  15 May 2009

N. C. Graham
Affiliation:
From the Department of Bacteriology, Institute of Pathology, Queen's University, Belfast
Eileen O. Bartley
Affiliation:
From the Department of Bacteriology, Institute of Pathology, Queen's University, Belfast
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An investigation of enterococci from human and bovine sources by the method of Lancefield (1933) shows that they possess a specific antigen by which the enterococcus group can be defined.

The validity of this method as a means of differentiating the enterococcus from other groups of streptococci is confirmed by the biochemical and other properties, such as the association of mannitol fermentation with heat resistance of the starins used, which already differentiate the group in some degree. The tests for susceptibility to lysis by bacteriophages, carried out during the present investigation, are also confirmatory of the results obtained by the precipitin method.

As the specific antigen characteristic of enterococci cannot be demonstrated in strains representative of groups A, B, C, (Lancefield, 1933) and Str. lactis (Lister, 1873) it is concluded that these are unrelated to the enterococcus.

A number of other streptococci, however, including Str. zymogenes (MacCallum & Hastings, 1899), Str. liquefaciens (Orla-Jensen, 1919), and group D haemolytic streptococcus (Lancefield, 1933) have been shown to possess an antigen in common with the enterococcus, as well as the other properties of enterococci, including susceptibility to lysis by bacteriophages; these are usually considered as distinct species, but reasons are advanced in the present communication for regarding them as varieties of enterococci.

The name group D haemolytic streptococcus of Lancefield, is unnecessary and may give rise to confusion. As an enterococcus, it possesses no characteristic antigenic, or haemolytic or other property which differentiates it from the zymogenes or haemolyticus varieties of enterococci referred to in this communication.

The more important growth characters and fermentation and other properties of the enterococci, classifield by the precipitin method in this investigation, may be summarized as follows; ability to grow at 10 and at 45°C., in broth containing 6·5% NaCl, in broth of pH 9·6, to produce chains in pure bile, to produce a final pH in 1% glucose broth of 4–4·2, to reduce methyleneblue, and to ferment trehalose, sorbitol and salicin; but deficiency in one or more of these properties was occasionally noted.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1939

References

REFERENCES

Andrewes, F. W. & Horder, T. J. (1906). Lancet, 2, 708, 775, 852, 1621.CrossRefGoogle Scholar
Avery, O. T. & Cullen, G. E. (1919). J. exp. Med. 29, 215.CrossRefGoogle Scholar
Avery, R. C. (1929). J. exp. Med. 50, 787.CrossRefGoogle Scholar
Ayers, S. H. (1916). J. Bact. 1, 84.Google Scholar
Ayers, S. H. & Rupp, P. (1922). J. infect. Dis. 30, 388.CrossRefGoogle Scholar
Bail, Oskar. (1921). Wien. Klin. Wschr. 34, 447.Google Scholar
Bagger, S. V. (1926). J. Path. Bact. 29, 225.CrossRefGoogle Scholar
Beckerich, A. & Hauduroy, P. (1922). C.R. Soc. Biol., Paris, 86, 168.Google Scholar
Belenky, D. E. & Popowa, N. N. (1929). Zbl. Bakt. I. Abt., Orig. 113, 22.Google Scholar
Bergey, D. H. (1926). Manual of Determinative Bacteriology, Lond., p. 49.Google Scholar
Brown, J. H. (1919). Monogr. Rockefeller Inst. Med. Res. no. 9.Google Scholar
Brown, J. H., Frost, W. D. & Shaw, M. (1926). J. infect. Dis. 38, 381.CrossRefGoogle Scholar
Conn, J. H. (1936). J. Bact. 31, 225.CrossRefGoogle Scholar
Dible, J. H. (1921). J. Path. Bact. 24, 3.CrossRefGoogle Scholar
Ehrismann, O., Hartmann, P., Seefried, J. & Wiechert, F. (1935). Z. Hyg. InfektKr. 117, 307.CrossRefGoogle Scholar
Evans, A. C. (1936). J. Bact. 31, 423.CrossRefGoogle Scholar
Fuller, A. T. (1938). Brit. J. exp. Path. 19, 130.Google Scholar
Gordon, M. H. (1905). Lancet, 2, 1400.CrossRefGoogle Scholar
Gough, G. A. C. & Burnet, F. M. (1934). J. Path. Bact. 38, 301.CrossRefGoogle Scholar
Hadley, P. & Dabney, E. (1926). Proc. Soc. exp. Biol., N. Y., 24, 13.CrossRefGoogle Scholar
Hare, R. & Colebrook, L. (1934). J. Path. Bact. 39, 429.CrossRefGoogle Scholar
Hare, R. & Maxted, W. R. (1935). J. Path. Bact. 41, 513.CrossRefGoogle Scholar
Harrison, F. C. & Van Der Leck, J. (1909). Zbl. Bakt. I. Abt., Orig. 51, 607.Google Scholar
Houston, T. (1934). Ulster Med. Jour., p. 224.Google Scholar
Houston, T. (1936). Proc. Soc. Int. Congr. Microbiol. Lond., p. 141.Google Scholar
Houston, T. & McCloy, J. M. (1916). Lancet, 2, 632.CrossRefGoogle Scholar
Lancefield, R. C. (1933). J. exp. Med. 57, 571.CrossRefGoogle Scholar
Lancefield, R. C. & Hare, R. (1935). J. exp. Med. 61, 335.CrossRefGoogle Scholar
Lister, Joseph. (1873). Quart. J. micr. Sci. 13, 380.Google Scholar
MacCallum, W. G. & Hastings, T. W. (1899). J. Exp. Med. 4, 521.CrossRefGoogle Scholar
Meyer, K. (1926). Zbl. Bakt. I. Abt., Orig., 99, 416.Google Scholar
Meyer, K. & Schonfeld, H. (1926). Zbl. Bakt. I. Abt., Orig. 99, 402.Google Scholar
Orla-Jensen, S. (1919). The Lactic Acid Bacteria. Copenhagen.Google Scholar
Orcutt, M. L. (1926). J. Bact. 11, 129.CrossRefGoogle Scholar
Rochaix, A. (1924). C. R. Soc. Biol., Paris, 90, 771.Google Scholar
Sherman, J. M. (1937). J. Bact. 33, 26.Google Scholar
Sherman, J. M. (1937). Bact. Rev. 1, 79.Google Scholar
Sherman, J. M. & Albus, W. R. (1918). J. Bact. 3, 153.CrossRefGoogle Scholar
Sherman, J. M. & Stark, P. (1931). J. Bact. 22, 275.CrossRefGoogle Scholar
Sherman, J. M. & Stark, P. (1934). J. Dairy Sci. 17, 525.CrossRefGoogle Scholar
Sherman, J. M., Stark, P. & Mauer, J. C. (1937). J. Bact. 33, 483.CrossRefGoogle Scholar
Shigeno, K. (1938). Z. ImmunForsch. 94, 520.Google Scholar
Stableforth, A. W. (1937). J. Path. Bact. 45, 263.CrossRefGoogle Scholar
Takeda, K. (1935). Zbl. Bakt. 86, 341.Google Scholar
Thiercelin, M. E. (1899). C.R. Soc. Biol., Paris, 5, 55.Google Scholar
Tillet, W. S. & Garner, R. L. (1933). J. exp. Med. 58, 485.CrossRefGoogle Scholar
Weatherall, C. & Dible, J. H. (1929). J. Path. Bact. 32, 413.CrossRefGoogle Scholar
Weissenbach, R. G. (1918). C.R. Soc. Biol., Paris, 81, 243.Google Scholar
Wordley, E. (1921). J. Hyg., Camb., 20, 60.CrossRefGoogle Scholar
Wordley, E. (1922). Lancet, 2, 610.CrossRefGoogle Scholar
Wright, H. D. (1933). J. Path. Bact. 37, 257.CrossRefGoogle Scholar