Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-07T23:02:41.932Z Has data issue: false hasContentIssue false

A Species Difference with Regard to the Effect of Cortisone Acetate on Body Weight, γ-Globulin and Circulating Antitoxin Levels

Published online by Cambridge University Press:  15 May 2009

Jennifer Shewell*
Affiliation:
National Institute for Medical Research, Mill Hill, London
D. A. Long
Affiliation:
National Institute for Medical Research, Mill Hill, London
*
This work forms part of a thesis accepted by the University of London in part fulfilment of the requirements for the degree of Doctor of Philosophy.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is generally agreed that the administration of the 11–oxysteroid hormones of the adrenal cortex to the commonly used experimental animals, the rat and the rabbit, produces involution of lymphoid tissue. Since lymphoid tissue is an important site of formation of antibody, several workers have attempted to correlate the effects of adrenal steroids on lymphoid tissue with their effects on immunity. The effect of the 11–oxysteroid adrenal hormones on the immunity of experimental animals, as judged by the amount of circulating antitoxin present in the blood, is not, however, a matter of general agreement. Different workers have obtained widely diverse and conflicting results.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1956

References

Bjøbnboe, M., Fischel, E. E. & Stoerk, H. C. (1951). J. exp. Med. 93, 37.Google Scholar
Bbuce, H. M. & Pabkes, A. S. (1947). J. Hyg., Camb., 45, 70.Google Scholar
Bruce, H. M. & Parkes, A. S. (1949). J. Hyg., Camb., 47, 202.CrossRefGoogle Scholar
Buerey, J., Pierson, M., de Lavebgne, E. & Burdin, J. C. (1953). G.R. Soc. Biol., Paris, 147, 849.Google Scholar
de Vries, J. A. (1950). J. Immunol. 65, 1.CrossRefGoogle Scholar
Dougherty, T. F., Chase, J. H. & White, A. (1945). Proc. Soc. exp. Biol., N.Y., 58, 135.CrossRefGoogle Scholar
Dougherty, T. F., White, A. & Chase, J. H. (1944). Proc. Soc. exp. Biol., N.Y., 56, 28.CrossRefGoogle Scholar
Eichmann, P. L. & Havens, W. P. (1953). J. clin. Endocrin. 13, 648.CrossRefGoogle Scholar
Eisen, H. J., Mayer, M. M., Moore, D. H., Tarr, R.-R. & Stoerk, H. C. (1947). Proc. Soc. exp. Biol., N.Y., 65, 301.CrossRefGoogle Scholar
Gebmuth, F. G., Ottinger, B. & Oyama, J. (1952). Proc. Soc. exp. Biol., N.Y., 80, 188.CrossRefGoogle Scholar
Havens, W. P. & Schaffer, J. M. (1951). Fed. Proc. 10, 410.Google Scholar
Hayes, S. P. & Dougherty, T. F. (1952). Fed. Proc. 11, 67.Google Scholar
Ingle, D. J. (1938). Proc. Soc. exp. Biol., N.Y., 38, 443.CrossRefGoogle Scholar
Malkiel, S. & Hargis, B. J. (1952). J. Immunol. 69, 217.CrossRefGoogle Scholar
Miles, A. A. (1949). Brit. J. exp. Path. 30, 319.Google Scholar
Mirick, G. S. (1951). Johns Hopk. Hosp. Bull. 88, 332.Google Scholar
Römer, P. H. & Sames, Th. (1909). Z. ImmunForsch. 3, 344.Google Scholar
Rosenbaum, P. & Obinsky, W. (1953). Proc. Soc. exp. Biol., N.Y., 83, 502.CrossRefGoogle Scholar
Selye, H. (1950). Stress, p. 452. Montreal, Canada: Acta Inc.Google ScholarPubMed
Udall, V. (1955). J. Path. Bact. 69, 11.CrossRefGoogle Scholar
Vollmer, E. P. & Samsell, J. E. (1949). Endocrinology, 45, 204.Google Scholar
Weaver, J. A. (1955). J. Path. Bact. 69, 133.Google Scholar
Wells, B. B. & Kendall, E. C. (1940). Proc. Mayo Clin. 15, 133, 324.Google Scholar
White, A. & Dougherty, T. F. (1944). Proc. Soc. exp. Biol., N.Y., 56, 26.CrossRefGoogle Scholar