Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T02:00:38.109Z Has data issue: false hasContentIssue false

Angiotensin-converting enzyme and human physical performance

Published online by Cambridge University Press:  09 March 2007

John Payne
Affiliation:
Cardiovascular Genetics, British Heart Foundation Laboratories, Royal Free and University College London Medical School, Rayne Building, 5 University Street, London WC1E 6JF, UK
Hugh Montgomery*
Affiliation:
Cardiovascular Genetics, British Heart Foundation Laboratories, Royal Free and University College London Medical School, Rayne Building, 5 University Street, London WC1E 6JF, UK
Get access

Abstract

Genes undoubtedly play a role in the development of a successful athlete. This view has flourished on anecdotes such as the observation of a child who displays the same aptitude for a particular sport as one of their parents, or a pair of sisters who both excel in the same discipline. However, the conclusions made from this type of observation have an obvious limitation: that similar environmental factors may be just as responsible as genetic inheritance in explaining the passage and sharing of talent between family members. Here, we review briefly the salient data showing that genes do play a role in athletic performance, and although the data examining the effect of specific genes are limited, we present data examining the role of the angiotensin-converting enzyme gene in human physical performance.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Seeman, E, Hopper, JL, Young, NR, Formica, C, Goss, P and Tsalamandris, C (1996). Do genetic factors explain associations between muscle strength, lean mass, and bone density? A twin study. American Journal of Physiology 270: E320E327.Google ScholarPubMed
2Housh, DJ, Housh, TJ, Johnson, GO, Wei-Kom, C (1992). Hypertrophic response to unilateral concentric resistance training. Journal of Applied Physiology 73: 6570.CrossRefGoogle Scholar
3Thomis, MA, Beunen, GP, Maes, HH, Blimkie, CJ, Van Leemputte, M and Claessens, AL (1998). Strength training: importance of genetic factors. Medicine and Science in Sports and Exercise 30: 724731.CrossRefGoogle ScholarPubMed
4Thomis, MA, Beunen, GP, Van Leemputte, M, Maes, HH, Blimkie, CJ and Claessens, AL (1998). Inheritance of static and dynamic arm strength and some of its determinants. Acta Physiologica Scandinavica 163: 5971.CrossRefGoogle ScholarPubMed
5Pocock, NA, Eisman, JA, Hopper, JL, Yeates, MG, Sambrook, PN and Eberl, S (1987). Genetic determinants of bone mass in adults. A twin study. Journal of Clinical Investigation 80: 706710.CrossRefGoogle ScholarPubMed
6Smith, DM, Nance, WE, Kang, KW, Christian, JC, Johnston, CC Jr (1973). Genetic factors in determining bone mass. Journal of Clinical Investigation 52: 28002808.CrossRefGoogle ScholarPubMed
7Singh, JP, Larson, MG, O'Donnell, CJ, Tsuji, H, Evans, JC and Levy, D (1999). Heritability of heart rate variability: the Framingham Heart Study. Circulation 99: 22512254.CrossRefGoogle ScholarPubMed
8McIlhany, ML, Shaffer, JW, Hines, EA Jr (1975). The heritability of blood pressure: an investigation of 200 pairs of twins using the cold pressor test. Johns Hopkins Medical Journal 136: 5764.Google ScholarPubMed
9Boomsma, DI, Snieder, H de, Geus, EJ, van Doornen, LJ (1998). Heritability of blood pressure increases during mental stress. Twin Research 1: 1524.CrossRefGoogle ScholarPubMed
10Rotimi, CN, Cooper, RS, Cao, G, Ogunbiyi, O, Ladipo, M and Owoaje, E (1999). Maximum-likelihood generalized heritability estimate for blood pressure in Nigerian families. Hypertension 33: 874878.CrossRefGoogle ScholarPubMed
11Wang, ZQ, Ouyang, Z, Wang, DM and Tang, XL (1990). Heritability of blood pressure in 7- to 12-year-old Chinese twins, with special reference to body size effects. Genetic Epidemiology 7: 447452.CrossRefGoogle ScholarPubMed
12North, KE, MacCluer, JW, Devereux, RB, Howard, BV, Welty, TK and Best, LG (2002). Heritability of carotid artery structure and function: the Strong Heart Family Study. Arteriosclerosis, Thrombosis, and Vascular Biology 22: 16981703.CrossRefGoogle ScholarPubMed
13Atwood, LD, Samollow, PB, Hixson, JE, Stern, MP and MacCluer, JW (2001). Genome-wide linkage analysis of pulse pressure in Mexican Americans. Hypertension 37: 425428.CrossRefGoogle ScholarPubMed
14Klissouras, V (1971). Heritability of adaptive variation. Journal of Applied Physiology 31: 338344.CrossRefGoogle ScholarPubMed
15Landry, F, Bouchard, C and Dumesnil, J (1985). Cardiac dimension changes with endurance training. Indications of a genotype dependency. Journal of the American Medical Association 254: 7780.CrossRefGoogle ScholarPubMed
16Adams, TD, Yanowitz, FG, Fisher, AG, Ridges, JD, Nelson, AG and Hagan, AD (1985). Heritability of cardiac size: an echocardiographic and electrocardiographic study of monozygotic and dizygotic twins. Circulation 71: 3944.CrossRefGoogle ScholarPubMed
17Bielen, E, Fagard, R and Amery, A (1991). The inheritance of left ventricular structure and function assessed by imaging and Doppler echocardiography. American Heart Journal 121: 17431749.CrossRefGoogle ScholarPubMed
18Harshfield, GA, Grim, CE, Hwang, C, Savage, DD and Anderson, SJ (1990). Genetic and environmental influences on echocardiographically determined left ventricular mass in black twins. American Journal of Hypertension 3: 538543.CrossRefGoogle ScholarPubMed
19Verhaaren, HA, Schieken, RM, Mosteller, M, Hewitt, JK, Eaves, LJ and Nance, WE (1991). Bivariate genetic analysis of left ventricular mass and weight in pubertal twins (the Medical College of Virginia twin study). American Journal of Cardiology 68: 661668.CrossRefGoogle ScholarPubMed
20Swan, L, Birnie, DH, Padmanabhan, S, Inglis, G, Connell, JM and Hillis, WS (2003). The genetic determination of left ventricular mass in healthy adults. European Heart Journal 24: 577582.CrossRefGoogle ScholarPubMed
21Bouchard, C, Lesage, R, Lortie, G, Simoneau, JA, Hamel, P and Boulay, MR (1986). Aerobic performance in brothers, dizygotic and monozygotic twins. Medicine and Science in Sports and Exercise 18: 639646.CrossRefGoogle ScholarPubMed
22Timmermans, PBMWM and Smith, RD (1994). Angiotensin II receptor subtypes: selective antagonists and functional correlates. European Heart Journal 15: 7987.CrossRefGoogle ScholarPubMed
23Kem, DC and Brown, RD (1990). Renin – from beginning to end. New England Journal of Medicine 323: 11361137.CrossRefGoogle ScholarPubMed
24Dzau, VJ (1988). Tissue renin–angiotensin system: physiologic and pharmacologic implications. Circulation 77 Suppl. I I-1 – I-3Google ScholarPubMed
25Lee, MA, Paul, M, Bohm, M and Ganten, D (1992). Effects of angiotensin-converting enzyme inhibitors on tissue renin–angiotensin systems. American Journal of Cardiology 70 12C – 19CCrossRefGoogle ScholarPubMed
26Hagemann, A, Nielsen, AH and Poulsen, K (1994). The uteroplacental renin–angiotensin system: a review. Experimental and Clinical Endocrinology 102: 252261.CrossRefGoogle ScholarPubMed
27Harris, RC and Cheng, HF (1996). The intrarenal renin–angiotensin system: a paracrine system for the local control of renal function separate from the systemic axis. Experimental Nephrology 4: 27.Google ScholarPubMed
28Buikema, H, Pinto, YM, van Geel, PP, Rooks, G de, Langen, CD de and Graeff, PA (1997). Differential inhibition of plasma versus tissue ACE by utibapril: biochemical and functional evidence for inhibition of vascular ACE activity. Journal of Cardiovascular Pharmacology 29: 684691.CrossRefGoogle ScholarPubMed
29Dragovic, T, Minshall, R, Jackman, HL, Wang, L-X and Erdos, EG (1996). Kininase II-type enzymes. Their putative role in muscle energy metabolism. Diabetes 45 Suppl 1 S34S37CrossRefGoogle ScholarPubMed
30Jonsson, JR, Game, PA, Head, RJ and Frewin, DB (1994). The expression and localisation of the angiotensin-converting enzyme mRNA in human adipose tissue. Blood Pressure 3: 7275.CrossRefGoogle ScholarPubMed
31Rigat, B, Hubert, C, Alhenc-Gelas, F, Cambien, F, Corvol, P and Soubrier, F (1990). An insertion/deletion polymorphism in the angiotensin-1-converting enzyme gene accounting for half the variance of serum enzyme levels. Journal of Clinical Investigation 86: 13431346.CrossRefGoogle Scholar
32Costerousse, O, Allegrini, J, Lopez, M, Alhenc-Gelas, F (1993). Angiotensin-I converting enzyme in human circulating mononuclear cells: genetic polymorphism of expression in T-lymphocytes. The Biochemical Journal 290: 3340.CrossRefGoogle ScholarPubMed
33Danser, AH, Schalekamp, MA, Bax, WA, van-den-Brink, AM, Saxena, PR and Riegger, GA (1995). Angiotensin converting enzyme in the human heart. Effect of the deletion/insertion polymorphism. Circulation 92: 13871388.CrossRefGoogle ScholarPubMed
34Yamazaki, T and Yazaki, Y (2000). Molecular basis of cardiac hypertrophy. Zeitschrift für Kardiologie 89: 16.CrossRefGoogle ScholarPubMed
35Lorell, BH (1999). Role of angiotensin AT1, and AT2 receptors in cardiac hypertrophy and disease. American Journal of Cardiology 83 48H – 52HCrossRefGoogle ScholarPubMed
36Emanueli, C, Maestri, R, Corradi, D, Marchione, R, Minasi, A and Tozzi, MG (1999). Dilated and failing cardiomyopathy in bradykinin B(2) receptor knockout mice. Circulation 100: 23592365.CrossRefGoogle ScholarPubMed
37Harrap, SB, O'Sullivan, JB (1996). Cardiac transplantation, perindopril, and left ventricular hypertrophy in spontaneously hypertensive rats. Hypertension 28: 622626.CrossRefGoogle ScholarPubMed
38Montgomery, HE, Clarkson, P, Dollery, CM, Prasad, K, Losi, M-A and Hemingway, H (1997). Association of angiotensin-converting enzyme gene I/D polymorphism with change in left ventricular mass in response to physical training. Circulation 96: 741747.CrossRefGoogle ScholarPubMed
39Myerson, S, Montgomery, H, Whittingham, M, World, M, Humphries, S and Pannell, D (2001). Left ventricular hypertrophy with exercise and the angiotensin converting enzyme gene I/D polymorphism: a randomised controlled trial with Losartan. Circulation 103: 226230.CrossRefGoogle Scholar
40Fatini, C, Guazzelli, R, Manetti, P, Battaglini, B, Gensini, F and Vono, R (2000). RAS genes influence exercise-induced left ventricular hypertrophy: an elite athletes study. Medicine and Science in Sports and Exercise 32: 18681872.CrossRefGoogle Scholar
41Nagashima, J, Musha, H, Takada, H, Awaya, T, Oba, H and Mori, N (2000). Influence of angiotensin-converting enzyme gene polymorphism on development of athlete's heart. Clinical Cardiology 23: 621624.CrossRefGoogle ScholarPubMed
42Kuznetsova, T, Staessen, JA, Wang, JG, Gasowski, J, Nikitin, Y and Ryabikov, A (2000). Antihypertensive treatment modulates the association between the D/I ACE gene polymorphism and left ventricular hypertrophy: a meta-analysis. Journal of Human Hypertension 14: 447454.CrossRefGoogle Scholar
43Dellgren, G, Eriksson, MJ, Blange, I, Brodin, LA, Radegran, K and Sylven, C (1999). Angiotensin-converting enzyme gene polymorphism influences degree of left ventricular hypertrophy and its regression in patients undergoing operation for aortic stenosis. American Journal of Cardiology 84: 909913.CrossRefGoogle ScholarPubMed
44Estacio, RO, Jeffers, BW, Havranek, EP, Krick, D, Raynolds, M and Schrier, RW (1999). Deletion polymorphism of the angiotensin converting enzyme gene is associated with an increase in left ventricular mass in men with type 2 diabetes mellitus. American Journal of Hypertension 12: 637642.CrossRefGoogle ScholarPubMed
45Osono, E, Kurihara, S, Hayama, N, Sakurai, Y, Ohwada, K and Onoda, N (1998). Insertion/deletion polymorphism in intron 16 of the ACE gene and left ventricular hypertrophy in patients with end-stage renal disease. American Journal of Kidney Diseases 32: 725730.CrossRefGoogle ScholarPubMed
46Williams, AG, Rayson, MP, Jubb, M, World, M, Woods, DR and Hayward, M (2000). The ACE gene and muscle performance. Nature 403: 614CrossRefGoogle ScholarPubMed
47Montgomery, HE, Marshall, RM, Hemingway, H, Myerson, S, Clarkson, P and Dollery, C (1998). Human gene for physical performance. Nature 393: 221222.CrossRefGoogle ScholarPubMed
48Folland, J, Leach, B, Little, T, Hawker, K, Myerson, S and Montgomery, H (2000). Angiotensin-converting enzyme genotype affects the response of human skeletal muscle to functional overload. Experimental Physiology 85: 575579.Google ScholarPubMed
49Hopkinson, NS, Nickol, AH, Payne, J, Hawe, E, Man, WD and Moxham, J (2004). Angiotensin converting enzyme genotype and strength in chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine 170: 393399.CrossRefGoogle ScholarPubMed
50Zhang, B, Tanaka, H, Shono, N, Miura, S, Kiyonaga, A and Shindo, M (2003). The I allele of the angiotensin-converting enzyme gene is associated with an increased percentage of slow-twitch type I fibers in human skeletal muscle. Clinical Genetics 63: 139144.CrossRefGoogle ScholarPubMed
51Gayagay, G, Yu, B, Hambly, B, Boston, T, Hahn, A and Celermajer, DS (1998). Elite endurance athletes and the ACE I allele – the role of genes in athletic performance. Human Genetics 103: 4850.CrossRefGoogle ScholarPubMed
52Myerson, S, Hemingway, H, Budget, R, Martin, J, Humphries, S and Montgomery, H (1999). Human angiotensin I-converting enzyme gene and endurance performance. Journal of Applied Physiology 87: 13131316.CrossRefGoogle ScholarPubMed
53Nazarov, IB, Woods, DR, Montgomery, HE, Shneider, OV, Kazakov, VI and Tomilin, NV (2001). The angiotensin converting enzyme I/D polymorphism in Russian athletes. European Journal of Human Genetics 9: 797801.CrossRefGoogle ScholarPubMed
54Alvarez, R, Terrados, N, Ortolano, R, Iglesias-Cubero, G, Reguero, JR and Batalla, A (2000). Genetic variation in the renin–angiotensin system and athletic performance. European Journal of Applied Physiology 82: 117120.CrossRefGoogle ScholarPubMed
55Woods, D, Hickman, M, Jamshidi, Y, Brull, D, Vassiliou, V and Jones, A (2001). Elite swimmers and the D allele of the ACE I/D polymorphism. Human Genetics 108: 230232.CrossRefGoogle Scholar
56Tsianos, G, Sanders, J, Dhamrait, S, Humphries, S, Grant, S and Montgomery, H (2004). The ACE gene insertion/deletion polymorphism and elite endurance swimming. European Journal of Applied Physiology 92: 360362.CrossRefGoogle ScholarPubMed
57Taylor, RR, Mamotte, CD, Fallon, K, van Bockxmeer, FM (1999). Elite athletes and the gene for angiotensin-converting enzyme. Journal of Applied Physiology 87: 10351037.CrossRefGoogle ScholarPubMed
58Karjalainen, J, Kujala, UM, Stolt, A, Mantysaari, M, Viitasalo, M and Kainulainen, K (1999). Angiotensinogen gene M235T polymorphism predicts left ventricular hypertrophy in endurance athletes. Journal of the American College of Cardiologists 34: 494499.CrossRefGoogle ScholarPubMed
59Rankinen, T, Wolfarth, B, Simoneau, JA, Maier-Lenz, D, Rauramaa, R and Rivera, MA (2000). No association between the angiotensin-converting enzyme ID polymorphism and elite endurance athlete status. Journal of Applied Physiology 88: 15711575.CrossRefGoogle ScholarPubMed
60Montgomery, H and Dhamrait, S (2002). ACE genotype and performance. Journal of Applied Physiology 92: 17741775. author reply 1776–1777CrossRefGoogle ScholarPubMed
61Woods, DR, Humphries, SE and Montgomery, HE (2000). The ACEI/D polymorphism and human physical performance. Trends in Endocrinology and Metabolism 11: 416420.CrossRefGoogle Scholar
62Houle, S, Landry, M, Audet, R, Bouthillier, J, Bachvarov, DR and Marceau, F (2000). Effect of allelic polymorphism of the B(1) and B(2) receptor genes on the contractile responses of the human umbilical vein to kinins. Journal of Pharmacology and Experimental Therapeutics 294: 4551.Google Scholar
63Brull, D, Dhamrait, S, Myerson, S, Erdmann, J, Woods, D and World, M (2001). Bradykinin B2BKR receptor polymorphism and left-ventricular growth response. Lancet 358: 11551156.CrossRefGoogle ScholarPubMed
64Williams, AG, Dhamrait, SS, Wootton, PT, Day, SH, Hawe, E and Payne, JR (2004). Bradykinin receptor gene variant and human physical performance. Journal of Applied Physiology 96: 938942.CrossRefGoogle ScholarPubMed
65Brown, NJ, Blais, C Jr, Gandhi, SK and Adam, A (1998). ACE insertion/deletion genotype affects bradykinin metabolism. Journal of Cardiovascular Pharmacology 32: 373377.CrossRefGoogle ScholarPubMed