Published online by Cambridge University Press: 09 March 2007
This study used a randomized crossover design, with investigators blind to the treatment given, to test the hypothesis that seven commercially available electrolyte supplements would alter plasma concentrations of Na+, K+, Cl−, lactate, total protein (TP) and total carbon dioxide (tCO2) as well as plasma strong ion difference (SID) and haematocrit (HCT). Ten unfit Standardbred mares (∼450 kg, 4–9 years) completed a series of simulated race exercise tests (SRT) during which venous blood was collected at five sampling intervals (prior to receiving electrolyte treatment, prior to the SRT, immediately following exercise and at 60 and 90 min post-SRT). Plasma electrolyte and tCO2 concentrations were measured in duplicate using a Beckman EL-ISE electrolyte analyser. No difference (P>0.05) between treatments was detected at any of the five sampling intervals for plasma [Na+], [K+], [Cl−] or [tCO2]. Similarly, no significant difference was detected between treatments across each of the five sampling intervals for plasma SID, HCT or TP concentration. There were differences (P<0.05) in plasma [Na+], [K+] and [tCO2] (as well as plasma SID, HCT, and TP concentration) in the immediately post-SRT samples that were attributable to the physiological pressures associated with acute exercise. No differences (P>0.05) were detected between treatments across the pre-electrolyte and pre-SRT sampling intervals for plasma lactate concentration. There was, however, a significant time by treatment interaction during the 0, 60 and 90 min post-SRT sampling intervals for this parameter. The electrolyte supplements featured in this investigation did not affect either plasma tCO2 concentration or SID; however, this result does not rule out the potential for other supplements, especially those containing alkalinizing ingredients, to exert an effect that could push a horse towards threshold values.