No CrossRef data available.
Published online by Cambridge University Press: 01 August 2003
An action of $\mathbb{Z}^k$ is associated to a higher rank graph $\Lambda$ satisfying a mild assumption. This generalizes the construction of a topological Markov shift arising from a non-negative integer matrix. We show that the stable Ruelle algebra of $\Lambda$ is strongly Morita equivalent to $C^*(\Lambda)$. Hence, if $\Lambda$ satisfies the aperiodicity condition, the stable Ruelle algebra is simple, stable and purely infinite.