Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-07T18:15:16.531Z Has data issue: false hasContentIssue false

Almost everywhere convergence of convolution powers

Published online by Cambridge University Press:  19 September 2008

Alexandra Bellow
Affiliation:
Mathematics Department, Northwestern University, Evanston, IL 60201, USA
Roger Jones
Affiliation:
Mathematics Department, DePaul University, 2219 N. Kenmore, Chicago, IL 60614, USA
Joseph Rosenblatt
Affiliation:
Mathematics Department, Ohio State University, Columbus, OH 43210, USA

Abstract

Given an ergodic dynamical system (X,B,m, τ) and a probability measure μ on the integers, define for all fL1(X) The almost everywhere convergence of the convolution powers μnf(x) depends on the properties of μ. If μ has finite and then for all fLp(X), 1< p < ∞, exists for a.e. x. However, if m2(μ) is finite and E(μ)≠0, then there exists EB such that a.e. and a.e. In the case when m2(μ) is infinite and E(μ)=0 we give examples for which we have divergence and other examples which show convergence is possible.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bellow, A.. Jones, R. & Rosenblatt, J.. Convergence of moving averages. Ergod. Th. & Dynam. Sys. 10 (1990), 4363.CrossRefGoogle Scholar
[2]Bellow, A., Jones, R. & Rosenblatt, J.. Almost everywhere convergence of weighted averages. Math. Ann. 293 (1992), 399426.CrossRefGoogle Scholar
[3]Bellow, A., Jones, R. & Rosenblatt, J.. Almost everywhere convergence of powers. In Almost Everywhere Convergence. Sucheston, L. and Edgar, G., eds. Academic: New York, 1989. pp. 99120.Google Scholar
[4]Blum, J. & Eisenberg, B. Generalized summing sequences and the meanergodic theorem. Proc. Amer. Math. Soc. 42 (1974), 423429.CrossRefGoogle Scholar
[5]Bourgain, J.. Almost sure convergence and bounded entropy. Israel J. Math. 62 (1988), 1991.Google Scholar
[6]Chung, K. L. & Fuchs, W. H. J.. On the distribution of values of sums of random variables. Amer. Math. Soc. Mem. #6 (1951), 112.Google Scholar
[7]Chung, K. L. & Erdös, P. On the distribution of values of sumsof random variables. Amer. Math. Soc. Mem. #6 (1951), 1319.Google Scholar
[8]Junco, A. del & Rosenblatt, J.. Counterexamples in ergodic theory and number theory. Math. Ann. 245 (1979), 185197.CrossRefGoogle Scholar
[9]Dunford, N. & Schwartz, J.. Linear Operators. Vol. I. John Wiley: New York, 1966.Google Scholar
[10]Ellis, M. & Friedman, N.. Sweeping out on a set of integers. Proc.Amer. Math. Soc. 72 #3 (1978), 509512.CrossRefGoogle Scholar
[11]Katznelson, Y.. An Introduction to Harmonic Analysis. John Wiley: New York, 1968.Google Scholar
[12]Kesten, H.. Sums of independent random variables—without moment condition. Ann. Math. Stat. 43 (1972), 701732.CrossRefGoogle Scholar
[13]Reinhold-Larsson, K.. Almost everywhere convergence of weighted averages. PhD Thesis. Ohio State University, 1991.Google Scholar
[14]Reinhold-Larsson, K.. Convolution powers in L1. Illinois J. Math. 37 (1993), 666679.Google Scholar
[15]Rosenblatt, J.. Universally bad sequences in ergodic theory. In: Almost Everywhere Convergence II. Bellow, A. and Jones, R. eds. Academic: New York, 1991, pp. 227245.CrossRefGoogle Scholar
[16]Spitzer, F.. Principles of Random Walks. Springer: New Heidelberg, Berlin, 1976.CrossRefGoogle Scholar
[17]Stein, E.. On the maximal ergodic theorem. Proc. Natl Acad. Sci. 47 (1961), 18941897.CrossRefGoogle ScholarPubMed
[18]Zygmund, A.. Trigonometric Series. Vol I, II. Cambridge University Press: Cambridge, 1979.Google Scholar