Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T16:35:44.123Z Has data issue: false hasContentIssue false

Amenable actions of inverse semigroups

Published online by Cambridge University Press:  06 October 2015

RUY EXEL
Affiliation:
Universidade Federal de Santa Catarina, Departamento de Matemática, Florianópolis, Brazil
CHARLES STARLING
Affiliation:
University of Ottawa, Department of Mathematics and Statistics, Ottawa, Canada email cstar050@uottawa.ca

Abstract

We say that an action of a countable discrete inverse semigroup on a locally compact Hausdorff space is amenable if its groupoid of germs is amenable in the sense of Anantharaman-Delaroche and Renault. We then show that for a given inverse semigroup ${\mathcal{S}}$, the action of ${\mathcal{S}}$ on its spectrum is amenable if and only if every action of ${\mathcal{S}}$ is amenable.

Type
Research Article
Copyright
© Cambridge University Press, 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anantharaman-Delaroche, C.. Amenability and exactness for dynamical systems and their C*-algebras. Trans. Amer. Math. Soc. 354 (2002), 41534178.CrossRefGoogle Scholar
Anantharaman-Delaroche, C. and Renault, J.. Amenable Groupoids (Monographie de l’Enseignement Mathématique, 36) . l’Enseignement Mathématique, Geneva, 2000.Google Scholar
Duncan, J. and Paterson, A.. C*-algebras of inverse semigroups. Proc. Edinb. Math. Soc. 28 (1985), 4158.Google Scholar
Exel, R.. Inverse semigroups and combinatorial C*-algebras. Bull. Braz. Math. Soc. (N.S.) 39(2) (2008), 191313.Google Scholar
Milan, D.. C*-algebras of inverse semigroups: amenability and weak containment. J. Operator Theory 63(2) (2010), 317332.Google Scholar
Paterson, A.. Groupoids, Inverse Semigroups, and Their Operator Algebras. Birkhäuser, Boston, MA, 1999.Google Scholar
Renault, J.. A Groupoid Approach to C*-algebras (Lecture Notes in Mathematics, 793) . Springer, Berlin, 1980.CrossRefGoogle Scholar
Willett, R.. A non-amenable groupoid whose maximal and reduced C*-algebras are the same. Preprint, 2015, arXiv:1504.05615 [math.OA].Google Scholar