Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-10T20:21:53.970Z Has data issue: false hasContentIssue false

Applications of the asymptotic range to analytic subalgebras of groupoid C*-algebras

Published online by Cambridge University Press:  19 September 2008

Baruch Solel
Affiliation:
Department of Mathematics, Technion-Israel Institute of Technology, 32000 Haifa, Israel

Abstract

For a 1-cocycle c on a principal r-discrete groupoid G, that vanishes only on the unit space of G, we show that the asymptotic range of c, , is an invariant for the total order c−1([0, ∞]). It follows that is also an invariant (with respect to isometric isomorphisms) of the triangular analytic algebra supported on c−1([0, ∞]). We also prove that if and only if the analytic algebra has a certain maximality property.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[D]Davidson, K.. Nest algebras. Potman Research Notes in Math. 191 (Longman Scientific and Technical, 1988).Google Scholar
[FM]Feldman, J. and Moore, C. C.. Ergodic equivalence relations, cohomology, and von Neumann algebras I. Trans. Amer. Math. Soc. 234 (1977), 289324.CrossRefGoogle Scholar
[K]Kawahigashi, Y.. One parameter automorphism groups of the hyperfinite type II1 factor. J. Operator Theory (to appear).Google Scholar
[KT]Kawamura, S. & Tomiyama, J.. On subdiagonal algebras associated with flows in operator algebras. J. Math. Soc. Japan 29 (1977), 7390.Google Scholar
[LM]Loebl, R. I. & Muhly, P. S.. Analyticity and flows in von Neumann algebras. J. Funct. Anal. 29 (1978), 214252.CrossRefGoogle Scholar
[MQS]Muhly, P. S., Qiu, C. & Solel, B.. Intrinsic Isomorphism invariants for some triangular operator algebras. Self adjoint and non-self adjoint operator algebras.Google Scholar
[MS1]Muhly, P. S. & Solel, B.. Subalgebras of groupoid C*-algebras. J. Reine und Angew. Math. 402 (1989), 4175.Google Scholar
[MS2]Muhly, P. S. & Solel, B.. On triangular subalgebras of groupoid C*-algebras. Israel J. Math. 71 (1990), 257274.CrossRefGoogle Scholar
[OP]Olesen, D. & Pedersen, G. K.. Applications of the Connes spectrum to c*-dynamical systems. J. Fund. Anal. 30 (1978), 179197.CrossRefGoogle Scholar
[PPW]Peters, J., Poon, Y. & Wagner, B.. Triangular AF algebras. J. Operator Theory 23 (1990), 81114.Google Scholar
[PW]Peters, J. & Wagner, B.. Triangular AF algebras and nest subalgebras of UHF algebras. Preprint.Google Scholar
[R]Renault, J.. A groupoid approach to c*-algebras. Springer Lecture Notes in Mathematics 793 (Springer: Berlin-Heidelberg-New York, 1980).Google Scholar
[S1]Solel, B.. Analytic operator algebras.Google Scholar
[S2]Solel, B.. Maximality of analytic operator algebras. Israel J. Math. 62 (1988), 6389.CrossRefGoogle Scholar
[SV]Solel, B. & Ventura, B.. Analytic triangular AF algebras. In preparation.Google Scholar
[T]Thelwall, M. A.. Maximal triangular subalgebras of AF algebras. Preprint.Google Scholar
[V1]Ventura, B.. A note on subdiagonality for triangular AF algebras. Proc. Amer. Math. Soc.Google Scholar
[V2]Ventura, B.. Strongly maximal triangular UHF algebras.Google Scholar