Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T23:40:19.186Z Has data issue: false hasContentIssue false

Closures of locally divergent orbits of maximal tori and values of homogeneous forms

Published online by Cambridge University Press:  05 November 2020

GEORGE TOMANOV*
Affiliation:
Institut Camille Jordan, Université Claude Bernard – Lyon I, Bâtiment de Mathématiques, 43 Bld. du 11 Novembre 1918, 69622Villeurbanne Cedex, France (e-mail: tomanov@math.univ-lyon1.fr)

Abstract

Let ${\mathbf {G}}$ be a semisimple algebraic group over a number field K, $\mathcal {S}$ a finite set of places of K, $K_{\mathcal {S}}$ the direct product of the completions $K_{v}, v \in \mathcal {S}$ , and ${\mathcal O}$ the ring of $\mathcal {S}$ -integers of K. Let $G = {\mathbf {G}}(K_{\mathcal {S}})$ , $\Gamma = {\mathbf {G}}({\mathcal O})$ and $\pi :G \rightarrow G/\Gamma $ the quotient map. We describe the closures of the locally divergent orbits ${T\pi (g)}$ where T is a maximal $K_{\mathcal {S}}$ -split torus in G. If $\# S = 2$ then the closure $ \overline{T\pi (g)}$ is a finite union of T-orbits stratified in terms of parabolic subgroups of ${\mathbf {G}} \times {\mathbf {G}}$ and, consequently, $\overline{T\pi (g)}$ is homogeneous (i.e. $\overline{T\pi (g)}= H\pi (g)$ for a subgroup H of G) if and only if ${T\pi (g)}$ is closed. On the other hand, if $\# \mathcal {S}> 2$ and K is not a $\mathrm {CM}$ -field then $\overline {T\pi (g)}$ is homogeneous for ${\mathbf {G}} = \mathbf {SL}_{n}$ and, generally, non-homogeneous but squeezed between closed orbits of two reductive subgroups of equal semisimple K-ranks for ${\mathbf {G}} \neq \mathbf {SL}_{n}$ . As an application, we prove that $\overline {f({\mathcal O}^{n})} = K_{\mathcal {S}}$ for the class of non-rational locally K-decomposable homogeneous forms $f \in K_{\mathcal {S}}[x_1, \ldots , x_{n}]$ .

Type
Original Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Berget, M.. Géométrie. Vol. 2. Edition Nathan, Paris, 1990.Google Scholar
Borel, A., Linear Algebraic Groups, 2nd enlarged edn ( Graduate Texts in Mathematics, 126). Springer, New York, 1991.CrossRefGoogle Scholar
Borel, A. and Prasad, G.. Values of isotropic quadratic forms at $S$ -integral points. Compos. Math. 83 (1992), 347372.Google Scholar
Borel, A. and Tits, J.. Groupes réductifs. Publ. Math. Inst. Hautes Études Sci. 27 (1965), 55151.CrossRefGoogle Scholar
Bourbaki, N.. Groupes et algèbres de Lie. Chapitres VII, VIII (Eléments de Mathématique, Fascicule 38). Hermann, Paris, 1975.Google Scholar
Cassels, J. W. S. and Frohlich, A.. Algebraic Number Theory. Academic Press, London, 1967.Google Scholar
Dani, S. G. and Margulis, G. A.. Values of quadratic forms at primitive integral points. Invent. Math. 98 (1989), 405424.CrossRefGoogle Scholar
Einsiedler, M., Katok, A. and Lindenstrauss, E.. Invariant measures and the set of exceptions of Littlewood conjecture. Ann. Math. 164 (2006), 513560.CrossRefGoogle Scholar
Einsiedler, M. and Kleinbock, D.. Measure rigidity and p-adic Littlewood-type problems. Compos. Math. 143 (2007), 689702.CrossRefGoogle Scholar
Einsiedler, M. and Lindenstrauss, E.. On measures invariant under tori on quotients of semi-simple groups. Ann. Math. 181 (2015), 9931031.CrossRefGoogle Scholar
Ferte, D.. Weyl chamber flow on irreducible quotients of $\mathrm{PSL}\left(2,\mathbb{R}\right)\times \mathrm{PSL}\left(2,\mathbb{R}\right)$ . Transform. Groups 11(1) (2006), 1728.CrossRefGoogle Scholar
Lang, S.. Introduction to Transcendental Numbers. Addison-Wesley, Reading, MA, 1966.Google Scholar
Lindenstrauss, E. and Shapira, U.. Homogeneous orbit closures and applications. Ergod. Th. & Dynam. Sys. 32(02) (2012), 785807.CrossRefGoogle Scholar
Margulis, G. A.. The action of unipotent groups in lattice space. Mat. Sbornik (N.S.) 86(126) (1971), 552556 (in Russian).Google Scholar
Margulis, G. A.. On the action of unipotent groups on the space of lattices. Proc. of the Summer School on Group Representations (János Bolyai Mathematical Society, Budapest, 1971) (Akadémiai Kiadó, Budapest, 1975), pp. 365370.Google Scholar
Margulis, G. A.. Oppenheim conjecture. Fields Medalists’ Lectures (World Scientific Series in 20th Century Mathematics , 5). World Scientific Publishing, River Edge, NJ, 1997, pp. 272327.CrossRefGoogle Scholar
Margulis, G. A.. Problems and conjectures in rigidity theory. Mathematics: Frontiers and Perspectives. American Mathematical Society, Providence, RI, 2000, pp. 161174.Google Scholar
Mozes, S.. On closures of orbits and arithmetic of quaternions. Israel J. Math. 86 (1994), 195209.CrossRefGoogle Scholar
Margulis, G. A. and Tomanov, G. M.. Invariant measures for actions of unipotent groups over local fields on homogeneous spaces. Invent. Math. 116 (1994), 347392.CrossRefGoogle Scholar
Margulis, G. A. and Tomanov, G. M.. Measure rigidity for almost linear groups and its applications. J. Anal. Math. 69 (1996), 2554.CrossRefGoogle Scholar
Maucourant, F.. A non-homogeneous orbit closure of a diagonal subgroup. Ann. Math. 171 (2010), 557570.CrossRefGoogle Scholar
Platonov, V. P. and Rapinchuk, A. S.. Algebraic Groups and Number Theory. Academic Press, Boston, 1994.Google Scholar
Ratner, M.. Raghunathan’s topological conjecture and distribution of unipotent flows. Duke Math. J. 63 (1991), 235280.CrossRefGoogle Scholar
Ratner, M.. On Raghunathan’s measure conjecture. Ann. Math. 134 (1992), 545607.CrossRefGoogle Scholar
Ratner, M.. Raghunathan’s conjectures for Cartesian products of real and $\mathrm{p}$ -adic Lie groups. Duke Math. J. 77 (1995), 275382.CrossRefGoogle Scholar
Remak, R.. Über algebraische Zahlkörper mit schwachem Einheitsdefekt. Compos. Math. 12 (1954), 3580 (in German).Google Scholar
Shah, N.. Limit distributions of polynomial trajectories on homogeneous spaces. Duke Math. J. 75(3) (1994), 711732.CrossRefGoogle Scholar
Shah, N. and Weiss, B.. On actions of epimorphic subgroups of homogeneous spaces. Ergod. Th. & Dynam. Sys. 20(2) (2000), 567592.CrossRefGoogle Scholar
Shapira, U.. A solution to a problem of Cassels and Diophantine properties of cubic numbers. Ann. Math. 173(1) (2011), 14.CrossRefGoogle Scholar
Tomanov, G.. Values of decomposable forms at $\mathbf{\mathcal{S}}$ -integral points and orbits of tori on homogeneous spaces. Duke Math. J. 138 (2007), 533562.CrossRefGoogle Scholar
Tomanov, G.. Divergent orbits on $\mathbf{\mathcal{S}}$ -adic homogeneous spaces. Pure Appl. Math. Q. 3(4) (2007), 969985.CrossRefGoogle Scholar
Tomanov, G.. Locally divergent orbits on Hilbert modular spaces. Int. Math. Res. Not. 2013 (2013), 14041433.CrossRefGoogle Scholar
Tomanov, G.. Orbits on homogeneous spaces of arithmetic origin and approximation. Adv. Stud. Pure Math. 26 (2000), 265297.CrossRefGoogle Scholar
Tomanov, G. and Weiss, B. Closed orbits for actions of maximal tori on homogeneous spaces Duke Math. J. 119 (2003), 367392.CrossRefGoogle Scholar
Weil, A.. Adels and Algebraic Groups. Institute for Advanced Study, Princeton, NJ, 1961.Google Scholar
Weiss, B.. Divergent trajectories and $\mathbb{Q}$ -rank. Israel J. Math. 152 (2006), 221227.CrossRefGoogle Scholar
Weyl, H.. Über die Gleichverteilung von Zahlen mod. Eins. Math. Ann. 77 (1916), 313352.CrossRefGoogle Scholar