Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T12:37:39.981Z Has data issue: false hasContentIssue false

A dynamical system approach to the Kakutani–Fibonacci sequence

Published online by Cambridge University Press:  03 June 2013

INGRID CARBONE
Affiliation:
Department of Mathematics, University of Calabria, Ponte P. Bucci Cubo 30B, 87036 Arcavacata di Rende (Cosenza), Italy email i.carbone@unical.itiaco@mat.unical.itvolcic@unical.it
MARIA RITA IACÒ
Affiliation:
Department of Mathematics, University of Calabria, Ponte P. Bucci Cubo 30B, 87036 Arcavacata di Rende (Cosenza), Italy email i.carbone@unical.itiaco@mat.unical.itvolcic@unical.it
ALJOŠA VOLČIČ
Affiliation:
Department of Mathematics, University of Calabria, Ponte P. Bucci Cubo 30B, 87036 Arcavacata di Rende (Cosenza), Italy email i.carbone@unical.itiaco@mat.unical.itvolcic@unical.it

Abstract

In this paper we consider the sequence of Kakutani’s $\alpha $-refinements corresponding to the inverse of the golden ratio (which we call the Kakutani–Fibonacci sequence of partitions) and associate to it an ergodic interval exchange (which we call the Kakutani–Fibonacci transformation) using the ‘cutting–stacking’ technique. We prove that the orbit of the origin under this map coincides with a low discrepancy sequence (which we call the Kakutani–Fibonacci sequence of points), which has also been considered by other authors.

Type
Research Article
Copyright
© Cambridge University Press, 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aistleitner, C. and Hofer, M.. Uniform distribution of generalized Kakutani’s sequences of partitions. Ann. Mat. Pura Appl. (2011), 110; doi:10.1007/s10231-011-0235-9.Google Scholar
Barat, G. and Grabner, P.. Distribution properties of $G$-additive functions. J. Number Theory 60 (1996), 103123.CrossRefGoogle Scholar
Carbone, I.. How to construct generalized van der Corput sequences. Preprint, arXiv:1304.5083.Google Scholar
Carbone, I.. Discrepancy of $LS$-sequences of partitions and points. Ann. Mat. Pura Appl. 191 (2012), 819844.Google Scholar
Carbone, I., Iacò, M. R. and Volčič, A.. $LS$-sequences of points in the unit square. Preprint, 2012, arXiv:1211.2941.Google Scholar
Carbone, I. and Volčič, A.. Kakutani splitting procedure in higher dimension. Rend. Istit. Mat. Univ. Trieste 39 (2007), 119126.Google Scholar
Carbone, I. and Volčič, A.. A von Neumann theorem for uniformly distributed sequences of partitions. Rend. Circ. Mat. Palermo (2) 60 (1–2) (2011), 8388.Google Scholar
Chersi, F. and Volčič, A.. $\lambda $-equidistributed sequences of partitions and a theorem of the de Bruijn–Post type. Ann. Mat. Pura Appl. (4) 162 (1992), 2332.Google Scholar
Drmota, M. and Infusino, M.. On the discrepancy of some generalized Kakutani’s sequences of partitions. Unif. Distrib. Theory 7 (1) (2012), 75104.Google Scholar
Ferenczi, S.. Systems of finite rank. Colloq. Math. 73 (1) (1997), 3565.Google Scholar
Friedman, N. A.. Introduction to Ergodic Theory (Van Nostrand Reinhold Mathematical Studies, 29). Van Nostrand Reinhold, New York, 1970.Google Scholar
Friedman, N. A.. Replication and stacking in ergodic theory. Amer. Math. Monthly 99 (1) (1992), 3141.CrossRefGoogle Scholar
Grabner, P., Hellekalek, P. and Liardet, P.. The dynamical point of view of low discrepancy sequences. Unif. Distrib. Theory 7 (1) (2012), 1170.Google Scholar
Iacò, M. R.. $LS$-successioni di punti nel quadrato. Master’s Thesis, Università della Calabria, 2011.Google Scholar
Infusino, M. and Volčič, A.. Uniform distribution on fractals. Unif. Distrib. Theory 4 (2) (2009), 4758.Google Scholar
Kakutani, S.. A problem on equidistribution on the unit interval $[0, 1[$. Measure Theory (Proc. Conf., Oberwolfach, 1975) (Lecture Notes in Mathematics, 541). Springer, Berlin, 1976, pp. 369375.Google Scholar
Koksma, J. F.. Een algemenestelling uit de theorie der gelijkmatige veerdeling modulo 1. Mathematica B 11 (1942/43), 711 (Zutphen).Google Scholar
Kuipers, L. and Niderreiter, H.. Uniform Distribution of Sequences (Pure and Applied Matematics). Wiley-Interscience, New York, 1974.Google Scholar
Lambert, J. P.. Some developments in optimal and Quasi-Monte Carlo quadrature, and a new outlook on a classical Chebyshev problem. PhD Dissertation, The Claremont Graduate School, 1982.Google Scholar
Lambert, J. P.. Quasi-Monte Carlo, low discrepancy sequences, and ergodic transformations. J. Comput. Appl. Math. 12–13 (1985), 419423.Google Scholar
Ninomiya, S.. Constructing a new class of low-discrepancy sequences by using the $\beta $-adic transformation. IMACS Seminar on Monte Carlo Methods (Brussels, 1997). Math. Comput. Simulation 47 (2–5) (1998), 403418.Google Scholar
Schmidt, W. M.. Irregularities of distribution. VII. Acta Arith. 21 (1972), 4550.Google Scholar
Volčič, A.. A generalization of Kakutani’s splitting procedure. Ann. Mat. Pura Appl. (4) 190 (1) (2011), 4554.Google Scholar
Weyl, H.. Über ein Problem aus dem Gebiete der diophantischen Approximationen. Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl. (1914), 234244.Google Scholar