Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-10T09:12:26.031Z Has data issue: false hasContentIssue false

The equivalence theorem for ℤd-actions of positive entropy

Published online by Cambridge University Press:  19 September 2008

J. Roberto Hasfura-Buenaga
Affiliation:
Department of Mathematics, Trinity University, San Antonio, TX 78212, USA

Abstract

First, the class of id-finitely fixed actions of ℤd on a Lebesgue space is defined. Then, it is demonstrated that this property is stable under id-Kakutani equivalence and that, conversely, any two id-finitely fixed ℤd-actions of the same (finite) positive entropy are id-Kakutani equivalent. By id-Kakutani equivalence we mean that element in A. del Junco and D. Rudolph's family of relations on ℤd-actions corresponding to the identity d × d matrix.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Conze, J. P.. Entropie d'un groupe abélien de transformations, Z. Wahrscheinlichkeitstheorie. Verw. Geb. 25 (1972), 1130.CrossRefGoogle Scholar
[2]Dye, H. A.. On a group of measure preserving transformations I, II. Amer. J. Math. 81 (1959), 119159.CrossRefGoogle Scholar
[3]Fieldsteel, A. & Friedman, N.. Restricted orbit changes of ergodic ℤd-actions to get mixing and K. Ergod. Th. & Dynam. Sys. 6 (1986), 505528.CrossRefGoogle Scholar
[4]Feldman, J.. New K-automorphisms and a problem of Kakutani, Israel J. Math. 24 No. 1 (1976), 1638.CrossRefGoogle Scholar
[5]Feldman, J. & Nadler, D.. Reparametrization of n-flows of zero entropy. Trans. Amer. Math. Soc. 256 (1979), 289304.Google Scholar
[6]del Junco, A. & Rudolph, D.. Kakutani Equivalence of ℤn actions. Ergod. Th. Dynam. Sys. 4 (1984), 89104.CrossRefGoogle Scholar
[7]Ornstein, D. S., Rudolph, D. & Weiss, B.. Equivalence of measure preserving transformations. Mem. Amer. Math. Soc. 262 (1982).Google Scholar
[8]Rudolph, D.. Restricted orbit equivalence. Mem. Amer. Math. Soc. 323 (1985).Google Scholar
[9]Thouvenot, J. P.. Quelques propriétés des systèmes dynamiques. Israel J. Math. 21 2–3 (1975) 177207.CrossRefGoogle Scholar
[10]Weiss, B., General theory of ℤd-actions. Unpublished notes.Google Scholar