Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T01:01:04.510Z Has data issue: false hasContentIssue false

The existence of measures of a given cocycle, I: atomless, ergodic σ-finite measures

Published online by Cambridge University Press:  01 October 2008

BENJAMIN MILLER*
Affiliation:
UCLA Department of Mathematics, 520 Portola Plaza, Los Angeles, CA 90095-1555, USA (email: bdm@math.ucla.edu)

Abstract

Given a Polish space X, a countable Borel equivalence relation E on X, and a Borel cocycle , we characterize the circumstances under which there is a suitably non-trivial σ-finite measure μ on X such that, for every Borel injection ϕ whose graph is contained in E, ρ−1(x),x)=[d*μ)/](xμ-almost everywhere.

Type
Research Article
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Feldman, J. and Moore, C. C.. Ergodic equivalence relations, cohomology, and von Neumann algebras. I. Trans. Amer. Math. Soc. 234(2) (1977), 289324.CrossRefGoogle Scholar
[2]Kechris, A. S.. Classical Descriptive Set Theory (Graduate Texts in Mathematics, 156). Springer, New York, 1995.CrossRefGoogle Scholar
[3]Kechris, A. S. and Miller, B. D.. Topics in Orbit Equivalence (Lecture Notes in Mathematics, 1852). Springer, Berlin, 2004.CrossRefGoogle Scholar
[4]Kechris, A. S., Solecki, S. and Todorčević, S.. Borel chromatic numbers. Adv. Math. 141(1) (1999), 144.CrossRefGoogle Scholar
[5]Rudin, W.. Real and Complex Analysis. McGraw-Hill, New York, 1987.Google Scholar
[6]Schmidt, K.. Cocycles on Ergodic Transformation Groups (Macmillan Lectures in Mathematics, 1). Macmillan Company of India, Ltd., Delhi, 1977.Google Scholar
[7]Shelah, S.. Can you take Solovay’s inaccessible away? Israel J. Math. 48(1) (1984), 147.CrossRefGoogle Scholar
[8]Slaman, T. and Steel, J. R.. Definable Functions on Degrees (Cabal Seminar, Lecture Notes in Mathematics, 1333). Eds. A. S. Kechris, D. A. Martin and J. R. Steel. Springer, Berlin, 1988, pp. 8185.Google Scholar
[9]Shelah, S. and Weiss, B.. Measurable recurrence and quasi-invariant measures. Israel J. Math. 43(2) (1982), 154160.CrossRefGoogle Scholar
[10]Weiss, B.. Measurable dynamics. Contemp. Math. 26 (1984), 395421.CrossRefGoogle Scholar