No CrossRef data available.
Article contents
Non-differentiable irrational curves for $C^1$ twist map
Part of:
Low-dimensional dynamical systems
Published online by Cambridge University Press: 02 December 2021
Abstract
We construct a $C^1$ symplectic twist map g of the annulus that has an essential invariant curve $\Gamma $ such that $\Gamma $ is not differentiable and g restricted to $\Gamma $ is minimal.
MSC classification
- Type
- Original Article
- Information
- Ergodic Theory and Dynamical Systems , Volume 42 , Issue 2: Anatole Katok Memorial Issue Part 1: Special Issue of Ergodic Theory and Dynamical Systems , February 2022 , pp. 491 - 499
- Copyright
- © The Author(s), 2021. Published by Cambridge University Press
References
Arnaud, M.-C.. Three results on the regularity of the curves that are invariant by an exact symplectic twist map. Publ. Math. Inst. Hautes Études Sci. 109 (2009), 1–17.CrossRefGoogle Scholar
Arnaud, M.-C.. A non-differentiable essential irrational invariant curve for a
${C}^1$
symplectic twist map. J. Mod. Dyn. 5(3) (2011), 583–591.10.3934/jmd.2011.5.583CrossRefGoogle Scholar
Arnaud, M.-C.. Boundaries of instability zones for symplectic twist maps. J. Inst. Math. Jussieu 13(1) (2013), 19–41.CrossRefGoogle Scholar
Birkhoff, G. D.. Surface transformations and their dynamical application. Acta Math. 43 (1920), 1–119.CrossRefGoogle Scholar
Chenciner, A.. La dynamique au voisinage d’un point fixe elliptique conservatif: de Poincaré et Birkhoff à Aubry et Mather [The dynamics at the neighborhood of a conservative elliptic fixed point: from Poincaré and Birkhoff to Aubry and Mather]. Sem. Bourbaki 1983/84(121–122) (1985), 147–170 (in French).Google Scholar
Eliasson, L. H., Kuksin, S., Marmi, S. and Yoccoz, J.-C.. Dynamical Systems and Small Divisors: Lectures from the C.I.M.E. Summer School held in Cetraro (13–20 June 1998) (Lecture Notes in Mathematics, 1784). Eds. Marmi, S. and Yoccoz, J.-C.. Springer, Berlin, 1998.Google Scholar
Herman, M.. Sur les courbes invariantes par les difféomorphismes de l’anneau (Asterisque, 103–104). Vol. 1. Société Mathématique de France, Paris, 1983.Google Scholar