Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-07T18:40:47.350Z Has data issue: false hasContentIssue false

Non-intersecting splitting σ-algebras in a non-Bernoulli transformation

Published online by Cambridge University Press:  28 April 2011

STEVEN KALIKOW*
Affiliation:
Department of Mathematics, University of Memphis, 3725 Norriswood, Memphis, TN 38152, USA (email: skalikow@memphis.edu)

Abstract

Given a measure-preserving transformation T on a Lebesgue σ-algebra, a complete T-invariant sub-σ-algebra is said to split if there is another complete T-invariant sub-σ-algebra on which T is Bernoulli which is completely independent of the given sub-σ-algebra and such that the two sub-σ-algebras together generate the entire σ-algebra. It is easily shown that two splitting sub-σ-algebras with nothing in common imply T to be K. Here it is shown that T does not have to be Bernoulli by exhibiting two such non-intersecting σ-algebras for the T,T−1 transformation, negatively answering a question posed by Thouvenot in 1975.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Ornstein, D. S. and Shields, P. S.. An uncountable family of K-automorphisms. Adv. Math. 10 (1973), 6388.CrossRefGoogle Scholar
[2]Kalikow, S.. T,T −1 transformation is not loosely Bernoulli. Ann. of Math. (2) 115 (1982), 154160.CrossRefGoogle Scholar
[3]Thouvenot, J.. Quelques propriétés des systèmes dynamiques qui se decomposent en un produit de deux systèmes dont l’un est un schema de Bernoulli. Israel J. Math. 21 (1975), 23.CrossRefGoogle Scholar
[4]Thouvenot, J.. Two facts concerning the transformations which satisfy the weak Pinsker property. Ergod. Th. & Dynam. Sys. 28 (2008).CrossRefGoogle Scholar
[5]Hoffman, C.. The scenery factor of the [T,T −1] transformation is not loosely Bernoulli. Proc. Amer. Math. Soc. 131(12) (2003), 37313735 (electronic).CrossRefGoogle Scholar
[6]Matzinger, H.. Reconstructing a 2 color scenery by observing it along a simple random walk path. Ann. Appl. Probab. 15(1B) (2005), 778815.CrossRefGoogle Scholar
[7]Thouvenot, J.. Remarque sur les systèmes dynamiques donnés avec plusieurs facteurs. Israel J. Math. 21 (1975), 23.CrossRefGoogle Scholar