No CrossRef data available.
Published online by Cambridge University Press: 03 May 2013
Let $F: \mathbb{R} \rightarrow \mathbb{R} $ be a real analytic increasing diffeomorphism with
$F- \mathrm{Id} $ being 1-periodic. Consider the translated family of maps
$\mathop{({F}_{t} : \mathbb{R} \rightarrow \mathbb{R} )}\nolimits_{t\in \mathbb{R} } $ defined as
${F}_{t} (x)= F(x)+ t$. Let
$\mathrm{Trans} ({F}_{t} )$ be the translation number of
${F}_{t} $ defined by
$$\mathrm{Trans} ({F}_{t} ): = \lim _{n\rightarrow + \infty }\frac{{ F}_{t}^{\circ n} - \mathrm{Id} }{n} .$$
$2\tau $ associated to
$F$ and let
${p}_{n} / {q}_{n} $ be the
$n$th convergent of
$\mathrm{Trans} (F)= \alpha \in \mathbb{R} \setminus \mathbb{Q} $. Denoting by
${\ell }_{\theta } $ the length of the interval
$\{ t\in \mathbb{R} ~\mid ~\mathrm{Trans} ({F}_{t} )= \theta \} $, we prove that the sequence
$({\ell }_{{p}_{n} / {q}_{n} } )$ decreases exponentially fast with respect to
${q}_{n} $. More precisely,
$$\mathop {\mathrm{lim\hphantom{,}sup} }\limits _{n\rightarrow + \infty } \frac{1}{{q}_{n} } \log {\ell }_{{p}_{n} / {q}_{n} } \leq - 2\pi \tau .$$
${\ell }_{{p}_{n} / {q}_{n} } $ and the width of the Arnol’d tongue, which confirms that the widths of the tongues decrease exponentially fast under suitable conditions.